Structure matters: Real-world laboratories as a new type of large-scale research infrastructure

Community member post by Franziska Stelzer, Uwe Schneidewind, Karoline Augenstein and Matthias Wanner

What are real-world laboratories? How can we best grasp their transformative potential and their relationship to transdisciplinary projects and processes? Real-world laboratories are about more than knowledge integration and temporary interventions. They establish spaces for transformation and reflexive learning and are therefore best thought of as large-scale research infrastructure. How can we best get a handle on the structural dimensions of real-word laboratories?

What are real-world laboratories?

Real-world laboratories are a targeted set-up of a research “infrastructure“ or a “space“ in which scientific actors and actors from civil society cooperate in the joint production of knowledge in order to support a more sustainable development of society.

Although such a laboratory establishes a structure, most discussions about real-world laboratories focus on processes of co-design, co-production and co-evaluation of knowledge, as shown in the figure below. Surprisingly, the structural dimension has received little attention in the growing field of literature.

Overcoming structure as the blind spot

We want to raise awareness of the importance of the structural dimension of real-world laboratories, including physical infrastructure as well as interpretative schemes or social norms, as also shown in the figure below. A real-world laboratory can be understood as a structure for nurturing niche development, or a space for experimentation that interacts (and aims at changing) structural conditions at the regime level.

Apart from this theoretical perspective, we want to add a concrete “infrastructural” perspective, as well as a reflexive note on the role of science and researchers. Giddens’ use of the term ‘structure’ helps to emphasize that scientific activity is always based on rules (eg., rules of proper research and use of methods in different disciplines) and resources (eg., funding, laboratories, libraries).

The two key challenges of real-world laboratories are that:

  1. both scientists and civil society actors are involved in the process of knowledge production; and,
  2. knowledge production takes place in real-world environments instead of scientific laboratories.
Franziska Stelzer (biography)

white-space_approx-6font

Uwe Schneidewind (biography)

white-space_approx-6font

Karoline Augenstein (biography)

white-space_approx-6font

Matthias Wanner (biography)

white-space_approx-6font

Structural perspective of, and process-oriented view on, real-world laboratories (source: Schneidewind et al., 2018)

How this relates to transdisciplinary processes

Transdisciplinary processes can be understood as a specific form of joint action by scientists and practice actors which serves the collective production of knowledge. The aim is to achieve a better understanding (scientific sphere), as well as activating transformation processes (practice sphere).

Giddens’ understanding of structure highlights the meaning of reflexivity of acting in real-world laboratories and the specific form that the duality of structure takes in these laboratories: scientists refer to rules and resources, ie., the modalities of structuration. At the same time, they try to change them in line with a sustainability-oriented transformation during their interaction with practice partners.

Here we can distinguish the structural level of the real-world laboratory and the process level of transdisciplinary research (also shown in the figure). Actors in a transdisciplinary process rely on the structural elements of the real-world laboratory to establish “agency” in terms of an intentional and conscious management of knowledge production and intervention processes. A structural perspective thus complements the process-oriented view on real-world laboratories. From a structuralist perspective, a real-world laboratory is a research infrastructure in which interpretive schemes and norms as well as allocative and authoritative resources are mobilized for real-world experiments. Simultaneously, these experiments enable reflexivity, re-interpretation and – by influencing the involved structural dimensions – sustainability-oriented structural change.

The structural dimensions of real-world laboratories

Based on our own experience with real-word laboratories, we find that the transdisciplinary research process benefits from a better understanding of the specific modalities of structure that actors draw upon in the context of real-world laboratories (see table below).

Modalities of structuration (based on Giddens 1984) in real-world laboratories (source Schneidewind et al., 2018)

Interpretive schemes are crucial for real-word laboratories because cooperation needs to be built on the basis of a common understanding of key concepts and terms. This applies to the real-word laboratory itself. Using this term in a concrete real-world setting is often problematic because of different understandings.

In addition, to achieve science-practice cooperation is only possible if civil society stakeholders are involved on an equal footing rather than as “test objects” in a laboratory.

Mobilization and commitment of actors requires a minimum of local identity, eg., with regard to the district or suburb, city or region in which the real-word laboratory is embedded. This is why a clear distinction and description of real-word laboratories and their link to locally set definitions and identities is of great importance.

In many real-word laboratories, the level of legitimating rules is sensitive. Are scientific actors and practice actors able to refer to shared norms which justify their interference in concrete city or regional settings? The justification of such a science-driven intrusion into society depends on many factors:

  • regional differences in the affinity towards science,
  • the recognition and reputation of the local scientific institutions; and,
  • the credibility of the scientists involved.

Our experience is that establishing and stabilizing such legitimation structures becomes more important as soon as real-word laboratories start engaging with and changing existing structures of power.

The availability of allocative resources has an immediate effect on real-word laboratories. The scope of an intervention depends on human and financial resources. These define the depth of the initiated transformation processes, including:

  • How many people can be reached by real-word laboratories
  • Is it possible to utilize whole areas, buildings, infrastructures, districts for real-world experiments?
  • Are investment resources available for testing, eg., new forms of regenerative energy supply?

Apart from allocative resources, the scope of real-word laboratories depends on authoritative resources, ie., the possibility of utilizing power in political or organizational governance processes, including:

  • Is it, for example, possible to experiment with road closures to bring forward mobility experiments?
  • Can official communication channels promote real-world experiments?
  • Can a management board motivate members or employees to participate in real-world experiments?

The specific characteristics or, in German, “Eigenart” of each real-word laboratory is determined by the specific interplay of its structural elements. The structural specifics of real-word laboratories have a significant impact on the type of transdisciplinary processes taking place within a real-word laboratory. A clear analytical understanding of the different structural dimensions facilitates the identification of different “patterns” emerging in real-word laboratories – with patterns offering a basic understanding of how experiences made in one particular real-word laboratories can be learned from and transferred to other contexts.

Does this fit with how you think about structure? Are there other dimensions of structure that you think should be included? How has structure played a role in real-world laboratories that you have been part of?

To find out more:
Schneidewind, U., Augenstein, K., Stelzer, F. and Wanner, M. (2018). Structure matters: Real-world laboratories as a new type of large-scale research infrastructure. A framework inspired by Giddens’ Structuration Theory. GAIA – Ecological Perspectives for Science and Society, 27, S1: 12-17. (Online, open access) (DOI): 10.14512/gaia.27.S1.5

See also the supplement: Schneidewind, U., Augenstein, K., Stelzer, F. and Wanner, M. (2018). Compilation of real-world laboratories with different spatial and thematic scopes (examples from Baden-Württemberg, North Rhine-Westphalia, and Switzerland). (Online):
http://www.oekom.de/…Schneidewind__Supplement_Cases.pdf (PDF 180KB)

References:
Giddens, A. (1984). The constitution of society: Outline of the theory of structuration. Polity: Cambridge, UK.

Gross, M. and Krohn, W. (2005). Society as experiment: Sociological foundations for a self-experimental society. History of the Human Sciences, 18, 2: 63–86.

Biography: Franziska Stelzer PhD is a research fellow at the Wuppertal Institute for Climate, Environment and Energy in Germany. Her main research interests are real-world laboratories in the context of transformative research and societal impact assessment.

Biography: Uwe Schneidewind PhD is president of the Wuppertal Institute for Climate, Environment and Energy and professor for Sustainable Transition Management at the University of Wuppertal, Germany. He is a member of the German Advisory Council on Global Change (WBGU). His main research interests are transformations to sustainability in their technological, economic, institutional and cultural dimensions and the role of science and science policy for sustainable development.

Biography: Karoline Augenstein PhD is a junior research group leader at the Center for Transformation Research and Sustainability (TransZent) at the University of Wuppertal, Germany. Her main research interests are in sustainability transitions research and transdisciplinary approaches, currently focusing on upscaling strategies for an urban sharing society.

Biography: Matthias Wanner is a research fellow at the Wuppertal Institute for Climate, Environment and Energy, Germany. His main research interests are real-world laboratories, bottom-up approaches and psychological dimensions for societal change.

Using Ostrom’s social-ecological systems framework to set context for transdisciplinary research: A case study

Community member post by Maria Helena Guimarães

maria-helena-guimaraes
Maria Helena Guimarães (biography)

How can Elinor Ostrom’s social-ecological systems framework help transdisciplinary research? I propose that this framework can provide an understanding of the system in which the transdisciplinary research problem is being co-defined.

Understanding the system is a first step and is necessary for adequate problem framing, engagement of participants, connecting knowledge and structuring the collaboration between researchers and non-academics. It leads to a holistic understanding of the problem or question to be dealt with. It allows the problem framing to start with a fair representation of the issues, values and interests that can influence the research outcomes. It also identifies critical gaps as our case study below illustrates. Continue reading

Leading large transdisciplinary projects

Community member post by Sanford D. Eigenbrode, Lois Wright Morton, and Timothy Martin

Sanford D. Eigenbrode (biography)

What’s required to lead exceptionally large projects involving many dozens of participants from various scientific disciplines (including biophysical, social, and economic), multiple stakeholders, and efforts spanning a gamut from discovery to implementation? Such projects are common when investigating social-ecological systems which are inherently complex and large in spatial and temporal scales. Problems are commonly multifaceted, with incomplete or apparently contradictory knowledge, stakeholders with divergent positions, and large economic or social consequences.

Leaders of such very large projects confront unique challenges in addition to those inherent to directing interdisciplinary efforts: Continue reading

The university campus as a transdisciplinary living laboratory

Community member post by Dena Fam, Abby Mellick Lopes, Alexandra Crosby and Katie Ross

How can transdisciplinary educators help students reflexively understand their position in the field of research? Often this means giving students the opportunity to go beyond being observers of social reality to experience themselves as potential agents of change.

To enable this opportunity, we developed a model for a ‘Transdisciplinary Living Lab’ (Fam et al., forthcoming). This builds on the concept of a collaborative test bed of innovative approaches to a problem or situation occurring in a ‘living’ social environment where end-users are involved. For us, the social environment is the university campus. We involved two universities in developing this model – the University of Technology Sydney and Western Sydney University. We aimed to help students explore food waste management systems on campus and to consider where the interventions they designed were situated within global concerns, planetary boundaries and the UN Sustainable Development Goals.

The Transdisciplinary Living Lab was designed and delivered in three largely distinct, yet iterative phases, scaling from individual experiences to a global problem context. These phases of the living lab, which work to integrate personal and professional knowledge and practice, are also shown in the figure below:

1. Entering the living lab was the phase where students were introduced to collaborative teamwork processes, expectations of joint problem formulation and critical reflection on their own position within the system being explored: ‘digging where they stand’. This meant helping students consider their relationships with the food waste system as consumers of food and producers of waste, as well as their potential impact as designers of interventions in that system.

2. Transdisciplinary learning was the second phase where students were introduced to the concept of research as a process of system intervention, as well as skills for co-producing and integrating knowledge in collaboration with diverse partners in the food system. For the Transdisciplinary Living Lab at the University of Technology Sydney this meant listening to, questioning and collaborating with relevant stakeholders in the system to investigate historical and current approaches to the issue, and exploring precedents for dealing with food waste in other parts of the world. Central to this phase was ensuring the sharing of knowledge among the students as it was produced. This meant organising a publically accessible class blog that can be viewed at https://wealthfromwaste.wordpress.com/ and weekly debriefs and discussions on insights gained.

Dena Fam (biography)

Abby Mellick Lopes (biography)

Alexandra Crosby (biography)

Katie Ross (biography)

Continue reading

Foundations of a translational health sciences doctoral program

Community member post by Gaetano R. Lotrecchiano and Paige L. McDonald

gaetano-lotrecchiano
Gaetano R. Lotrecchiano (biography)

How can doctoral studies be developed to include innovation in practice and research, as well as systems and complexity thinking, along with transdisciplinarity? This blog post is based on our work introducing a PhD in Translational Health Sciences at George Washington University in the USA.

Innovation in Practice and Research

We suggest that innovation in practice and research is achieved by the integration of knowledge in three key foundational disciplines:

  • translational research
  • collaboration sciences
  • implementation science (Lotrecchiano et al., 2016).

Continue reading

Lessons from “real-world laboratories” about transdisciplinary projects, transformative research and participation

Community member post by Antonietta Di Giulio and Rico Defila

antonietta-di-giulio
Antonietta Di Giulio (biography)
rico-defila
Rico Defila (biography)

In Germany there has recently been a heated debate about the need for, and the justification of, so-called “transformative research”. At the same time, German funders are increasingly supporting research in “real-world laboratories” and these explicitly aim to bring about social change. We lead an accompanying research project (“Begleitforschung” in German) in a real-world laboratory program of research in Baden-Württemberg (see Schäpke et al., (2015) for more information). This has led us to reflect upon the relationship between transdisciplinary research and transformative research, and how this impacts on how we think about participation in research. We share some preliminary ideas here.
Continue reading