Foundations of a translational health sciences doctoral program

Community member post by Gaetano R. Lotrecchiano and Paige L. McDonald

gaetano-lotrecchiano
Gaetano R. Lotrecchiano (biography)

How can doctoral studies be developed to include innovation in practice and research, as well as systems and complexity thinking, along with transdisciplinarity? This blog post is based on our work introducing a PhD in Translational Health Sciences at George Washington University in the USA.

Innovation in Practice and Research

We suggest that innovation in practice and research is achieved by the integration of knowledge in three key foundational disciplines:

  • translational research
  • collaboration sciences
  • implementation science (Lotrecchiano et al., 2016).

We define these as follows:

Translational research is a crosscutting approach that informs associations across a continuum of knowledge generation from basic biomedical discovery to rehabilitation interventions to global population health impact.

paige-mcdonald
Paige L. McDonald (biography)

Collaboration sciences form the foundation by which translational research is conducted and when implemented along with practice and policy efforts ensure that translational science can occur with strong representation of multi-stakeholders invested in health outcomes.

Implementation science is the investigation of processes and strategies influencing the movement of evidence-based healthcare and prevention strategies or programs from the clinical or public health knowledge base into routine use.

When considered together, these provide a recipe for high impact in innovations research and practice (see figure below from Lotrecchiano et al., 2016).

These three disciplines support innovations in health practices and research necessary to promote changes at the organizational, team and individual levels. All three are reflected in the overall program goals and were used to inform curriculum competencies. The aim is to prepare students to move from more basic approaches to research to those that are more systems based, as shown in the following figure (from Lotrecchiano et al., 2016).

 

 

Pairing complexity principles with transdisciplinary characteristics

Moving to a more systems-based approach requires the pairing of complexity principles with transdisciplinary characteristics to develop scientists equipped to operate beyond the confines of traditional or unidisciplinary training. These are illustrated in the table below, with complexity principles in the left hand column and transdisciplinary characteristics in the right hand column. We feel that introducing doctoral students to these principles allows them to participate in translational trandisciplinary research activities.

Complexity principles (left hand column) and transdisciplinary characteristics (right hand column) –  full references are available in Lotrecchiano (2012)

Conclusion

Readers may be interested in our doctoral student handbook (PDF 1.1MB). Our work to establish and maintain our approach to doctoral studies in this vein continues and we have enjoyed both successes and setbacks, but mostly successes, as we transform the way we approach this particular type of doctoral training amidst the healthcare and research climate in the United States.

We invite your comments and questions and hope to hear from you about your experiences.

To find out more:
Lotrecchiano, G. R., McDonald, P. L., Corcoran, H. K. and Ekmekci, O. (2016). Learning Theory, Operative Model, and Challenges in Developing a Framework for Collaborative Translational and Implementable Doctoral Research. Conference proceedings, 9th Annual International Conference of Education, Research and Innovation, 14-16 November, 2016, Seville: Spain. Online via Researchgate – 311363970

Reference:
Lotrecchiano, G. R . (2012). Social Mechanisms of Team Science: A Descriptive Case Study Using a Multilevel Systems Perspective Employing Reciprocating Structuration Theory. Doctoral dissertation, George Washington University: Washington DC United States of America. Online: https://pqdtopen.proquest.com/pqdtopen/doc/992950947.html?FMT=ABS

Biography: Gaetano R. Lotrecchiano, EdD PhD is an Associate Professor at the George Washington University (GWU) School of Medicine and Health Sciences, Washington DC USA, where he is the Director of Doctoral Candidacy in the PhD in Translational Health Sciences Program. He is the vice-president of the International Society for Systems and Complexity Sciences for Health and of the International Society of the Science of Team Science. He is the convener of the GWU program entitled Creating a Culture of Collaboration at GWU. He is also the Team Science Lead of the Clinical and Translational Science Institute (CTSI-CN), a partnership between Children’s National Health System and George Washington University.

Biography: Paige L. McDonald, EdD is an Assistant Professor at the George Washington (GW) University School of Medicine and Health Sciences, Washington DC USA, where she is the Director of Curriculum in the PhD in Translational Health Sciences Program. She is the Managing Director for the GW IMPACT Initiative and GW Collaboratory for Health Research and Education. She is also the Secretary of the International Society for Systems and Complexity Sciences for Health.

Five principles of holistic science communication

Community member post by Suzi Spitzer

suzi-spitzer.jpg
Suzi Spitzer (biography)

How can we effectively engage in the practice and art of science communication to increase both public understanding and public impact of our science? Here I present five principles based on what I learned at the Science of Science Communication III Sackler Colloquium at the National Academy of Sciences in Washington, DC in November 2017.

1. Assemble a diverse and interdisciplinary team

  1. Scientists should recognize that while they may be an expert on a particular facet of a complex problem, they may not be qualified to serve as an expert on all aspects of the problem. Therefore, scientists and communicators should collaborate to form interdisciplinary scientific teams to best address complex issues.
  2. Science is like any other good or service—it must be strategically communicated if we want members of the public to accept, use, or support it in their daily lives. Thus, research scientists need to partner with content creators and practitioners in order to effectively share and “sell” scientific results.
  3. Collaboration often improves decision making and problem solving processes. People have diverse cognitive models that affect the way each of us sees the world and how we understand or resolve problems. Adequate “thought world diversity” can help teams create and communicate science that is more creative, representative of a wider population, and more broadly applicable.

Continue reading

CoNavigator: Hands-on interdisciplinary problem solving

Community member post by Katrine Lindvig, Line Hillersdal and David Earle

How can we resolve the stark disparity between theoretical knowledge about interdisciplinary approaches and practical applications? How can we get from written guidelines to actual practices, especially taking into account the contextual nature of knowledge production; not least when the collaborating partners come from different disciplinary fields with diverse expectations and concerns?

For the past few years, we have been developing ways in which academic theory and physical interactions can be combined. The result is CoNavigator – a hands-on, 3-dimensional and gamified tool which can be used:

  • for learning purposes in educational settings
  • as a fast-tracking tool for interdisciplinary problem solving.

CoNavigator is a tool which allows groups to collaborate on a 3-dimensional visualisation of the interdisciplinary topography of a given field or theme. It addresses the contextual and local circumstances and the unique combinations of members in collaborative teams. CoNavigator is therefore short for both Context Navigation and Collaboration Navigation. The process of applying the tool takes around 3 hours.

Using CoNavigator

CoNavigator is composed of writable tiles and cubes to enable rapid, collaborative visualisation, as shown in the first figure below. The tactile nature of the tool is designed to encourage collaboration and negotiation over a series of defined steps.

Making the Tacit Visible and Tangible

Each participant makes a personal tool swatch. By explaining their skills to a person with a completely different background, the participant is forced to re-evaluate, re-formulate, and translate skills in a way that increases their own disciplinary awareness. Each competency that is identified is written onto a separate tool swatch.

katrine-lindvig
Katrine Lindvig (biography)

line-hillersdal
Line Hillersdal (biography)

david-earle
David Earle (biography)

Continue reading

Two types of interdisciplinary scholarship

Community member post by Andi Hess

andi-hess
Andi Hess (biography)

Would it be helpful to identify two distinct forms of interdisciplinary scholarship ― 1) individual interdisciplinarity and 2) interdisciplinary dialogue and team science ― and to make this distinction explicit in the literature? What are the benefits and challenges of each? Are a different set of resources and methods required to achieve effective interdisciplinary scholarship?

As integration scientists are aware, there are many analyses of appropriate methods for conducting interdisciplinary work. Each has its own benefits and challenges, and each requires a different set of resources and methods for achieving effective interdisciplinary scholarship. Continue reading

Overcoming a paradox? Preparing students for transdisciplinary environments

machiel -keestra_jan-2018
Machiel Keestra (biography)

Community member post by Machiel Keestra

How can we adequately prepare and train students to navigate transdisciplinary environments? How can we develop hybrid spaces in our universities that are suitable for transdisciplinary education?

These questions were considered by a plenary panel, which I organised and chaired at the International Transdisciplinarity Conference 2017 at Leuphana University, Germany. Three major educational requirements were identified:

  • long-term collaborations with businesses, as well as non-governmental, governmental and community organisations
  • teaching particular dispositions and competencies
  • preparing students for intercultural endeavours.

Continue reading

What makes research transdisciplinary?

Community member post by Liz Clarke

Liz Clarke (biography)

What do we mean by transdisciplinarity and when can we say we are doing transdisciplinary research? There is a broad literature with a range of different meanings and perspectives. There is the focus on real-world problems with multiple stakeholders in the “life-world”, and a sense of throwing open the doors of academia to transcend disciplinary boundaries to address and solve complex problems. But when it comes to the practicalities of work in the field, there is often uncertainty and even disagreement about what is and isn’t transdisciplinarity.

Let me give an example. Continue reading