Strengthening the ecosystem for effective team science: A case study from University of California, Irvine, USA

Community member post by Dan Stokols, Judith S. Olson, Maritza Salazar and Gary M. Olson

Dan Stokols (biography)

How can an ecosystem approach help in understanding and improving team science? How can this work in practice?

An Ecosystem Approach

Collaborations among scholars from different fields and their community partners are embedded in a multi-layered ecosystem ranging from micro to macro scales, and from local to more remote regions. Ecosystem levels include:

Judith S. Olson (biography)
  • individual members of teams;
  • the teams to which they belong viewed as organizational units;
  • the broader institutional contexts (eg., universities, research institutes) that support multi-team systems; and,
  • their community and societal milieus (eg., science policies and priorities established by national and international agencies and foundations).
Maritza Salazar (biography)

The success of team-based scholarly and translational initiatives depends on circumstances and events at each of these ecosystem levels and the extent to which they are aligned. For instance, the capacity of a science team to create and apply new knowledge is dependent on the task-specific abilities, interpersonal skills, training, and diverse attributes that individuals bring to their teams. Similarly, the viability and productivity of the team is impacted by the support it receives from institutional leaders and research funding agencies.

Gary M. Olson (biography)

The Team Science Acceleration Lab at the University of California, Irvine

We focus especially on the university-institutional level of the ecosystem and describe an initiative at the University of California, Irvine, USA designed to promote successful cross-disciplinary collaboration on our campus.

We recognize the interdependencies that exist among initiatives undertaken at an institutional level and other facets of the ecosystem, including the importance of articulating university team science programs with the concerns and priorities of community partners and national organizations. The national level is illustrated by the fact that many funding agencies now require cross-disciplinary applicant teams to submit collaboration plans as part of their research proposals. These multiple facets of the team science ecosystem are shown in the figure below.

Key facets of the team science ecosystem, including individual core competencies (orange), a team and its immediate socio-spatial environment (yellow), the institutional contexts of spatially distributed multi-team systems (blue), and broader community and societal influences on team science (green). Links between institutional and societal levels of the ecosystem are denoted by the bi-directional green arrows connecting a particular team (Team 1 or T1) at the center of the diagram with its local environmental, institutional and societal contexts (the yellow, blue, and green circles, respectively). Interdependencies between the team and its immediate socio-spatial environment are shown by the bi-directional purple arrows connecting the orange and yellow circles. In some collaborations, a team must coordinate with spatially removed partners located either at the same institution or at others (eg., multi-team systems spanning two or more universities at the institutional level, and non-academic partners situated in the outermost green circle). These multi-team transactions are denoted in the diagram by the bi-directional pink arrows linking Teams 1, 2, 3, and 4 (T1, T2, T3, T4) (Copyright: Dan Stokols, Judith Olson, Maritza Salazar and Gary Olson).

Establishing a campus culture that supports cross-disciplinary team research requires a comprehensive approach—one that eliminates potential barriers to effective collaboration, and creates structural supports to incentivize inter-departmental, inter-school, and university-community partnerships. From an ecological systems perspective, there are several different “leverage points” within institutional settings that can be aligned so that, together, they exert a positive synergistic influence on faculty and administrators’ efforts to promote cross-disciplinary team science. Six facets of the university-institutional ecosystem that we are initially targeting are:

  1. Ensuring that campus-wide long-range plans emphasize excellence in team science as a strategic institutional goal;
  2. Implementing new promotion and tenure criteria that recognize and reward collaborative contributions to scholarship and translational research, and tools to assist faculty candidates in articulating their contributions to collaborative research as an integral part of personnel reviews;
  3. Establishing equitable criteria for sharing credit among multiple investigators on inter-departmental and inter-school extramural grants;
  4. Allocating seed funding to support the development of new team science initiatives and research centers;
  5. Consulting with facilities planners on the design of team research spaces; and,
  6. Designing and implementing team science workshops and certification courses for faculty and students.

Specific examples of our activities at the Team Science Acceleration Lab include:

  • Working with the university’s Task Force on Interdisciplinarity to ensure that excellence in team science is reflected in the allocation of graduate research and teaching stipends to doctoral candidates working with interdisciplinary research centers and training programs on campus;
  • Planning a campus-wide “Team Science Celebration” event to draw attention to the importance of collaborative scholarship and translational research;
  • Consulting with campus planners on the design of a collaborative research building for the Applied Innovation Institute, which promotes university-community partnerships;
  • Helping develop and implement equitable credit-sharing accounting strategies to incentivize faculty participation in the development of inter-departmental extramural grant proposals and research centers;
  • Developing a new website of team science resources for faculty, students, and administrators;
  • Creating and evaluating a Collaborative Contributions List to help faculty engaged in collaborative scholarship articulate the ways that they’ve contributed to team-based projects as they compile their dossiers for promotion and tenure reviews; and,
  • Presenting team science workshops and courses for departmental and school research directors, members of cross-disciplinary centers and teams (both existing and emerging), and other interested faculty, graduate students, and postdoctoral trainees.

Conclusion

By adopting an ecosystem model for advancing successful team science, we hope to achieve greater synergy toward establishing a campus culture that supports cross-disciplinary discovery, teaching, and translational research. Do you have relevant experience to share? Do you have suggestions for a longitudinal, multi-method study that we’re planning to assess our institution’s cumulative progress toward strengthening cross-disciplinary scholarship, training, and implementation research? We welcome your comments and suggestions.

Further reading:
Bennett, L. M., Gadlin, H. and Marchand, C. (2018). Collaboration and team science field guide. 2nd ed. National Cancer Institute, Bethesda, Maryland, United States of America. Online: https://www.cancer.gov/about-nci/organization/crs/research-initiatives/team-science-field-guide

Börner, K., Contractor, N., Falk-Krzesinski, H. F., Fiore, S. M., Hall, K. L., Keyton, J., Spring, B., Stokols, D., Trochim, W. and Uzzi, B. (2010). A multi-level perspective for the science of team science. Science Translational Medicine, 2, 45

Hall, K., Crowston, K. and Vogel, A. (2014). How to write a collaboration plan. Online: https://www.teamsciencetoolkit.cancer.gov/Public/TSResourceBiblio.aspx?tid=3&rid=3119

Klein, J. T. and Falk-Krzesinski, H. J. (2017). Interdisciplinary and collaborative work: Framing promotion and tenure practices and policies. Research Policy, 46, 6: 1055–61

Zaccaro, S. J., Marks, M. and DeChurch, L. (2012). Multi-team systems: An introduction. In, S. J. Zaccaro, L. DeChurch and M. Marks (Eds).  Multiteam systems: An organization form for dynamic and complex environments, Routledge-Taylor and Francis: London, United Kingdom: pp. 3-32

Acknowledgement:
We thank University of California, Irvine’s Office of Research, Office of Academic Affairs, and Institute for Clinical and Translational Science for their support of this initiative.

Biography: Dan Stokols is Chancellor’s Professor Emeritus at the University of California, Irvine, USA and served as founding Dean of the university’s School of Social Ecology. His research spans the fields of social ecology, environmental and ecological psychology, public health, and transdisciplinary team science. He is author of Social ecology in the digital age and co-author of Enhancing the effectiveness of team science.

Biography: Judith S. Olson is the Donald Bren Professor of Information and Computer Sciences Emerita in the Department of Informatics at the University of California, Irvine, USA. For over 20 years, she has researched teams whose members are not collocated. She co-authored (with Gary Olson) Working together apart: Collaboration over the internet.

Biography: Maritza Salazar is an assistant professor at the Paul Merage School of Business at the University of California, Irvine, USA. Her research focuses on learning and innovation in teams and organizations, especially enhancing the competitiveness of firms, the effectiveness of teams, and the quality of the work experience for individuals. She serves as President of the International Network for the Science of Team Science (INSciTS).

Biography: Gary M. Olson is Professor Emeritus and formerly Donald Bren Professor of Information and Computer Sciences at the University of California, Irvine, USA. The focus of his work has been on how to support small groups of people working on difficult intellectual tasks, particularly when the members of the group are geographically distributed. He co-edited (with Ann Zimmerman and Nathan Bos) Scientific collaboration on the internet.

 

Metacognition as a prerequisite for interdisciplinary integration

Community member post by Machiel Keestra

Machiel Keestra (biography)

What’s needed to enable the integration of concepts, theories, methods, and results across disciplines? Why is communication among experts important, but not sufficient? Interdisciplinary experts must also meta-cognize: both individually and as a team they must monitor, evaluate and regulate their cognitive processes and mental representations. Without this, expertise will function suboptimally both for individuals and teams. Metacognition is not an easy task, though, and deserves more attention in both training and collaboration processes than it usually gets. Why is metacognition so challenging and how can it be facilitated? Continue reading

Three “must have” steps to improve education for collaborative problem solving

Community member post by Stephen M. Fiore

stephen-fiore_aug-2017
Stephen M. Fiore (biography)

Many environmental, social, and public health problems require collaborative problem solving because they are too complex for an individual to work through alone. This requires a research and technical workforce that is better prepared for collaborative problem solving. How can this be supported by educational programs from kindergarten through college? How can we ensure that the next generation of researchers and engineers are able to effectively engage in team science?

Drawing from disciplines that study cognition, collaboration, and learning, colleagues and I (Graesser et al., 2018) make three key recommendations to improve research and education with a focus on instruction, opportunities to practice, and assessment. Across these is the need to attend to the core features of teamwork as identified in the broad research literature on groups and teams. Continue reading

Embracing tension for energy and creativity in interdisciplinary research

Community member post by Liz Clarke and Rebecca Freeth

liz-clarke
Liz Clarke (biography)

Tensions inevitably arise in inter- and transdisciplinary research. Dealing with these tensions and resulting conflicts is one of the hardest things to do. We are meant to avoid or get rid of conflict and tension, right? Wrong!

Tension and conflict are not only inevitable; they can be a source of positivity, emergence, creativity and deep learning. By tension we mean the pull between the seemingly contradictory parts of a paradox, such as parts and wholes, stability and chaos, and rationality and creativity. These tensions can foster interpersonal conflict, particularly when team members treat the apparent contradictions as if only one was ‘right’. Continue reading

Grant proposal writing for teams: Avoiding Frankenstein’s monster

Community member post by Lauren Gee

lauren-gee
Lauren Gee (biography)

Writing a grant proposal as a team has many pluses—a plenitude of viewpoints, a wider wealth of knowledge to pull from, and a larger pool of resources to help edit and finalize the proposal. Too often, however, a team-written proposal turns out as “Frankenstein’s monster”: a mess of disparate parts, thrown onto the page. Agreement is missing throughout, with no consistency in terms of vocabulary, style, or even tense. So how can a team work together, from day one, to write a successful, cohesive proposal—how do we avoid Frankenstein’s monster? Continue reading

Skilful conversations for integration

Community member post by Rebecca Freeth and Liz Clarke

Rebecca Freeth (biography)

Interdisciplinary collaboration to tackle complex problems is challenging! In particular, interdisciplinary communication can be very difficult – how do we bridge the gulf of mutual incomprehension when we are working with people who think and talk so very differently from us? What skills are required when mutual incomprehension escalates into conflict, or thwarts decision making on important issues?

It is often at this point that collaborations lose momentum. In the absence of constructive or productive exchange, working relationships stagnate and people retreat to the places where they feel safest: Continue reading