Eight grand challenges in socio-environmental systems modeling

By Sondoss Elsawah and Anthony J. Jakeman

author-sondoss-elsawah
Sondoss Elsawah (biography)

As we enter a new decade with numerous looming social and environmental issues, what are the challenges and opportunities facing the scientific community to unlock the potential of socio-environmental systems modeling?

What is socio-environmental systems modelling?

Socio-environmental systems modelling:

  1. involves developing and/or applying models to investigate complex problems arising from interactions among human (ie. social, economic) and natural (ie. biophysical, ecological, environmental) systems.
  2. can be used to support multiple goals, such as informing decision making and actionable science, promoting learning, education and communication.
  3. is based on a diverse set of computational modeling approaches, including system dynamics, Bayesian networks, agent-based models, dynamic stochastic equilibrium models, statistical microsimulation models and hybrid approaches.

Eight grand challenges

author-tony-jakeman
Anthony Jakeman (biography)

With the advent of new techniques, data sources, and computational power, the expectation is that socio-environmental systems modeling should be more widely used to inform decision making at multiple scales. Nevertheless, this is not a straightforward endeavour, and both theoretical and methodological challenges abound.

It is therefore timely to identify and formulate current grand challenges in socio-environmental systems modeling, in order to propose clear directions for future generations of models and modeling, to both their developers and users.

We have identified eight areas of challenges, which are also illustrated in the figure below:

  1. Bridging epistemologies across disciplines
  2. Integrated treatment of modeling uncertainty
  3. Combining qualitative and quantitative methods and data sources
  4. Dealing with scales and scaling
  5. Capturing systemic changes in socio-environmental systems
  6. Integrating the human dimension
  7. Elevating the adoption of socio-environmental systems models and impacts on policy
  8. Leveraging new data types and sources.

For each challenge, we briefly highlight the nature of the challenge and key steps in the way forward. For more detail see Elsawah and colleagues (2020).

1: Bridging epistemologies across disciplines

Nature of the challenge:

  • Disciplinary training which limits the ability to develop interdisciplinary approaches
  • Ambiguity about what constitutes data resulting from differences in epistemologies
  • Institutional gate-keeping practices by disciplinary experts who reject novel interdisciplinary methodological approaches and theoretical frameworks
  • Lack of standard collaboration norms.

The way forward:

  • Training in multiple disciplines
  • Effective communication and trust in interdisciplinary collaborations
  • Advancing multi-method approaches
  • Acknowledging the multiple purposes of modeling
  • Diverse reward schemes.

2: Integrated treatment of modeling uncertainty

Nature of the challenge:

  • Limited adoption of integrated uncertainty assessment in practice
  • Limited communication of uncertainty to decision makers.

The way forward:

  • More attention to the qualitative aspects of uncertainty
  • More attention to methods that identify and integrate model structure sources of uncertainty
  • Moving beyond traditional quantitative methods
  • More attention to deep uncertainty and exploratory methods
  • More attention to surrogate modeling methods
  • Better utilization of statistical data analysis techniques to inform uncertainty analysis
  • Strengthening the communication process among model developers and the audience.

3: Combining qualitative and quantitative methods and data sources

Nature of the challenge:

  • Determining the right balance between quantitative and qualitative aspects of data collection and model building
  • Implementing mixed-methods in practice
  • Disciplinary perceptions of methods and data.

The way forward:

  • Reflective and comparative studies to examine the effect of alternative designs
  • Development of methods to support semantics mediation
  • Focusing on qualitative outputs of models.

4: Dealing with scales and scaling

Nature of the challenge:

  • Representing and matching scales in socio-environmental systems models
  • Different levels of knowledge and data about the social and environmental subsystems at various scales
  • Modeling phenomena across multiple scales.

The way forward:

  • Evaluation and comparison of different methodological choices related to scale
  • Developing accessible resources on scaling method
  • Using social models at different scales to represent the vertical interactions within the social subsystem and cross-scale processes in socio-environmental systems.

5: Capturing systemic changes in socio-environmental systems

Nature of the challenge:

  • Lack of knowledge and data on the fundamental processes that drive systemic shifts in social systems
  • Limited methods for modeling systemic changes.

The way forward:

  • Improving knowledge and data for social systems
  • New methods for reasoning about and modeling systemic change
  • Dealing with uncertainty issues as they relate to systemic change.

6: Integrating the human dimension

Nature of the challenge:

  • Limited funding for social science
  • Inherent difficulties in gathering data and representing the process of actual decision-making in models.

The way forward:

  • Better alignment between theory and data that inform social decision rules
  • Going beyond ad hoc assumptions or stylized theories underpinning human behaviour
  • Converging on a set of generic modules to represent iconic socio-economic decisions in the environmental context.

7: Elevating the adoption of socio-environmental systems models and impacts on policy

Nature of the challenge:

  • Measuring the impact of socio-environmental systems modeling on decision making
  • Lack of understanding of the inevitable uncertainty that is part of modeling complex socio-environmental systems
  • Scaling up of outcomes from participatory modeling across multiple scales.

The way forward:

  • In-depth understanding of participatory modeling aspects
  • Better understanding of the political process underpinning decision making
  • More effective visualization.

8: Leveraging new data types and sources

Nature of the challenge:

  • Dealing with emerging ethical issues
  • Methodological issues around data collection and use.

The way forward:

  • Incorporating ethics and equity considerations
  • Addressing biases and uncertainty.

A vision for the future

We also synthesize a vision for the future of socio-environmental systems modeling, which is organized around harnessing the following opportunities:

  1. education and training to prepare the future generations of socio-environmental systems modelers;
  2. consolidating methodological knowledge through multiple and comparative studies;
  3. shifting from piecemeal and ad-hoc uncertainty assessment practices to integrated uncertainty management.

If these issues can be surmounted, then we can ensure that decision makers have tools that can better address their needs.

We are keen to hear your views about the challenges and opportunities ahead of the socio-environmental systems modeling community. Do our eight challenges resonate with your experience? Are there other challenges that you would add? Which challenge will you be most interested to tackle, and why? Can you suggest other priority areas to focus on?

elsawah_eight-grand-challenges_environmental-modeling
Eight grand challenges for socio-environmental systems modeling and their underpinning issues (source: Elsawah et al., 2020)

To find out more:
Elsawah, S., Filatova, T., Jakeman, A. J., Kettner, A. J., Zellner, M. L., Athanasiadis, I. N., Hamilton, S. H., Axtell, R. L., Brown, D. G., Gilligan, J. M., Janssen, M. A., Robinson, D. T., Rozenberg, J., Ullah, I. I. T., Lade, S. J. Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modeling, 2: 16226. (Online) (DOI): https://doi.org/10.18174/sesmo.2020a16226

Biography: Sondoss Elsawah PhD is an Associate Professor and Deputy Director of the Capability Systems Centre, University of New South Wales Canberra, Australia. Her research focuses on the development and use of multi-method approaches to support learning and decision making in complex socio-ecological and socio-technical decision problems. Application areas include natural resource management and defence capability management. She was the chief investigator of the workshop on Use of socio-environmental systems modeling in actionable science: State-of-the-art, open challenges and opportunities, funded by the National Socio-Environmental Synthesis Center (SESYNC).

Biography: Tony Jakeman PhD is Professor and Director of the Integrated Catchment Assessment and Management (iCAM) Centre, at Fenner School of Environment and Society, The Australian National University, Canberra, Australia. His research interests include system identification, integrated assessment methods and decision support systems for water and associated land resource problems. He is leader of the National Centre for Groundwater Research and Training Program on Integrating Socioeconomics, Policy and Decision Support. He was a member of the workshop on Use of socio-environmental systems modeling in actionable science: State-of-the-art, open challenges and opportunities, funded by the National Socio-Environmental Synthesis Center (SESYNC).

Why model?

By Steven Lade

Steven Lade
Steven Lade (biography)

What do you think about mathematical modelling of ‘wicked’ or complex problems? Formal modelling, such as mathematical modelling or computational modelling, is sometimes seen as reductionist, prescriptive and misleading. Whether it actually is depends on why and how modelling is used.

Here I explore four main reasons for modelling, drawing on the work of Brugnach et al. (2008):

  • Prediction
  • Understanding
  • Exploration
  • Communication.

Continue reading

Four patterns of thought for effective group decisions

By George P. Richardson and David F. Andersen

George Richardson
George P. Richardson (biography)

What can you do if you are in a group that is trying to deal with problems that are developing over time, where:

  • root causes of the dynamics aren’t clear;
  • different stakeholders have different perceptions;
  • past solutions haven’t worked;
  • solutions must take into account how the system will respond; and,
  • implementing change will require aligning powerful stakeholders around policies that they agree have the highest likelihood of long-term success?

Continue reading

Designing scenarios to guide robust decisions

By Bonnie McBain

Bonnie McBain (biography)

What makes scenarios useful to decision makers in effectively planning for the future? Here I discuss three aspects of scenarios:

  • goals;
  • design; and,
  • use and defensibility.

Goals of scenarios

Since predicting the future is not possible, it’s important to know that scenarios are not predictions. Instead, scenarios stimulate thinking and conversations about possible futures. Continue reading

Agent-based modelling for knowledge synthesis and decision support

By Jen Badham

Jen Badham (biography)

The most familiar models are predictive, such as those used to forecast the weather or plan the economy. However, models have many different uses and different modelling techniques are more or less suitable for specific purposes.

Here I present an example of how a game and a computerised agent-based model have been used for knowledge synthesis and decision support.

The game and model were developed by a team from the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), a French agricultural research organisation with an international development focus. The issue of interest was land use conflict between crop and cattle farming in the Gnith community in Senegal (D’Aquino et al. 2003).

Agent-based modelling is particularly effective where understanding is more important than prediction. This is because agent-based models can represent the real world in a very natural way, making them more accessible than some other types of models. Continue reading

Managing uncertainty in decision making: What can we learn from economics?

By Siobhan Bourke and Emily Lancsar

Siobhan Bourke (biography)

How can researchers interested in complex societal and environmental problems best understand and deal with uncertainty, which is an inherent part of the world in which we live? Accidents happen, governments change, technological innovation occurs making some products and services obsolete, markets boom and inevitably go bust. How can uncertainty be managed when all possible outcomes of an action or decision cannot be known? In particular, are there lessons from the discipline of economics which have broader applicability? Continue reading