Linking learning and research through transdisciplinary competences

Community member post by BinBin Pearce

BinBin Pearce (biography)

What are the objectives of transdisciplinary learning? What are the key competences and how do they relate to both educational goals and transdisciplinary research goals? At Transdisciplinarity Lab (TdLab), our group answered these questions by observing and reflecting upon the six courses at Bachelor’s, Master’s, and PhD levels that we design and teach in the Department of Environmental Systems Science at ETH Zurich, Switzerland.

Six competence fields describe what we hope students can do with the help of our courses. A competence field contains a set of interconnected learning objectives for students. We use these competence fields as the basis for curriculum design. The competence fields were identified by reflecting on actual skills needed to conduct a transdisciplinary research process and by identifying elements from courses that have proven to be meaningful for students personally.

These competence fields are:

  1. Communicating values – Students are able to identify, ground and communicate assumptions and normative values in topics related to the concept of sustainable development.
  2. Reflecting about self and others – Students are reflective about their own perceptions and biases with regards to sustainable development.
  3. Applying concepts in the real-world – Students are able to appropriately apply conceptual knowledge to specific contexts, and, in parallel, exercise practical skills (such as project organization and time management) to deliver the required end products.
  4. Framing complex problems with others – Given a real-world topic and its accompanying conflicts and uncertainties, students are able to identify and frame clear, relevant problems with those who have contrasting perspectives or opinions.
  5. Researching in and with the real-world – Students are able to translate real-world problems into viable research questions. They are also able to identify the adequate research method(s) to investigate these questions and to co-produce knowledge with society.
  6. Imagining solutions and their consequences – Students are able to explore and develop solutions for real-world problems, while being aware of the possibility of unintended consequences of these solutions and taking responsibility for these consequences.

In making the link between transdisciplinary learning and research, we overlaid these competence fields with a pedagogical taxonomy and a transdisciplinary research framework to understand how these competences might contribute to the development of the student and to a transdisciplinary research process.

The pedagogical model is the classic Bloom’s Taxonomy (1986), which classifies learning objectives according to three domains: the cognitive, affective, and psychomotor or sensory domains. The cognitive learning domain encompasses reasoning and analytical skills. The affective learning domain describes the skills to be aware of self and others in terms of attitudes, emotions and feelings. The psychomotor domain focuses on physical, mechanical and sensory skills.

The transdisciplinary research framework is a sequence of design principles for the three phases of a transdisciplinary research process, as defined by Lang and colleagues (2012), sketched out in the table below. We matched a transdisciplinary competence field to the design principle(s) that would benefit from the application of the competence. In addition, we also matched Bloom’s taxonomy learning domains to each transdisciplinary design principle. The table below reveals the connection between the three schemes.

Transdisciplinary competence fields matched with the transdisciplinary research framework and Bloom’s taxonomy (source: Pearce et al., 2018)

The implications of these connections can be summarized as follows:

  • Both transdisciplinary research and transdisciplinary learning require the development of not only cognitive skills, but also affective and psychomotor skills, which include inter- and intra-personal skills, including the ability to communicate, to reflect, and to perceive the feeling and position of others. With the need to access skills in different learning domains, transdisciplinary research and learning are activities that develop the entire capacity of human learning, rather than focusing only on cognitive skills.
  • The transdisciplinary competences cover the span of skills needed for conducting an effective transdisciplinary research process. The list of competences listed here could serve as a reasonable foundation for a transdisciplinary education.
  • Skills needed to carry out a transdisciplinary research process straddle different learning domains. This suggests, for example, that cognitive skills could be developed alongside affective skills, rather than each being developed in isolation.

We hope that this framework may serve as a starting point for the design of other courses aimed at training future transdisciplinarians. As this work is in the beginning stages, we would also love to explore some of these concepts further with you. We look forward to hearing your experiences and comments.

To find out more about this framework and our teaching concepts:
Pearce, B., Adler, C., Senn, L., Krütli, P., Stauffacher, M. and Pohl, C. (2018, fothcoming). Making the link between transdisciplinary learning and research. In, D. Fam, L. Neuhauser, P. Gibbs (eds), Transdisciplinary theory, practice and education: The art of collaborative research and collective learning. Springer: Basel, Switzerland. Online: https://www.springer.com/us/book/9783319937427

References:
Bloom, B. S. (ed.) (1986). Taxonomy of Educational Objectives. 2nd ed., Longman: New York: United States of America.

Lang, D. J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., Swilling, M. and Thomas, C. (2012). Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustainability Science, 7, S1: 25–43. Online (DOI): 10.1007/s11625-011-0149-x

Biography: BinBin Pearce PhD is a lecturer, curriculum developer, and post-doctoral researcher in the Department of Environmental Systems Science at ETH Zurich in Switzerland. Her focus is on developing tools and methods that foster students’ ability to perceive and resolve complexity in the real world with clarity and creativity, by integrating design thinking and systems thinking methodologies. She is a part of the teaching team for a yearlong course for first-year Bachelor students, “Umweltproblemlösen” (Environmental Problem Solving) and for a Masters-level course called “Transdisciplinary Case Study”. She is also the coordinator and coach for the Transdisciplinarity Lab Winter School “Science meets Practice”, a week-long training program which aims to foster skills for PhD students from all disciplines to see how perspectives in research could be interpreted for societal needs.

What can interdisciplinary collaborations learn from the science of team science?

suzi-spitzer
Suzi Spitzer (biography)

How can we improve interdisciplinary collaborations? There are many lessons to be learned from the Science of Team Science. The following ten lessons summarize many of the ideas that were shared at the International Science of Team Science Conference in Galveston, Texas, in May 2018.

1. Team up with the right people
On the most basic level, scientists working on teams should be willing to integrate their thoughts with their teammates’ ideas. Participants should also possess a variety of social skills, such as negotiation and social perceptiveness. The most successful teams also encompass a moderate degree of deep-level diversity (values, perspectives, cognitive styles) and include women in leadership roles. Continue reading

Leading large transdisciplinary projects

Community member post by Sanford D. Eigenbrode, Lois Wright Morton, and Timothy Martin

Sanford D. Eigenbrode (biography)

What’s required to lead exceptionally large projects involving many dozens of participants from various scientific disciplines (including biophysical, social, and economic), multiple stakeholders, and efforts spanning a gamut from discovery to implementation? Such projects are common when investigating social-ecological systems which are inherently complex and large in spatial and temporal scales. Problems are commonly multifaceted, with incomplete or apparently contradictory knowledge, stakeholders with divergent positions, and large economic or social consequences.

Leaders of such very large projects confront unique challenges in addition to those inherent to directing interdisciplinary efforts: Continue reading

Interdisciplinarity and evil – Understanding incommensurability

Community member post by J. Britt Holbrook

J. Britt Holbrook (biography)

Incommensurability is a recognized problem in interdisciplinary research. What is it? How can we understand it? And what can we do about it?

What is it?

Incommensurability is best illustrated by a real example. I once co-taught a class with a colleague from another discipline. Her discipline depends on empirical analysis of data sets, literally on counting things. I, on the other hand, am a philosopher. We don’t count. One day she said to our students, “If you don’t have an empirical element in what you’re doing, it’s not research.” I watched the students start nodding, paused for half a beat, and volunteered, “So, I’ve never done any research in my entire career.” “That’s right!” she replied, immediately, yet hesitating somewhere between a discovery and a joke. Continue reading

Five principles of holistic science communication

Community member post by Suzi Spitzer

suzi-spitzer.jpg
Suzi Spitzer (biography)

How can we effectively engage in the practice and art of science communication to increase both public understanding and public impact of our science? Here I present five principles based on what I learned at the Science of Science Communication III Sackler Colloquium at the National Academy of Sciences in Washington, DC in November 2017.

1. Assemble a diverse and interdisciplinary team

  1. Scientists should recognize that while they may be an expert on a particular facet of a complex problem, they may not be qualified to serve as an expert on all aspects of the problem. Therefore, scientists and communicators should collaborate to form interdisciplinary scientific teams to best address complex issues.
  2. Science is like any other good or service—it must be strategically communicated if we want members of the public to accept, use, or support it in their daily lives. Thus, research scientists need to partner with content creators and practitioners in order to effectively share and “sell” scientific results.
  3. Collaboration often improves decision making and problem solving processes. People have diverse cognitive models that affect the way each of us sees the world and how we understand or resolve problems. Adequate “thought world diversity” can help teams create and communicate science that is more creative, representative of a wider population, and more broadly applicable.

Continue reading

CoNavigator: Hands-on interdisciplinary problem solving

Community member post by Katrine Lindvig, Line Hillersdal and David Earle

How can we resolve the stark disparity between theoretical knowledge about interdisciplinary approaches and practical applications? How can we get from written guidelines to actual practices, especially taking into account the contextual nature of knowledge production; not least when the collaborating partners come from different disciplinary fields with diverse expectations and concerns?

For the past few years, we have been developing ways in which academic theory and physical interactions can be combined. The result is CoNavigator – a hands-on, 3-dimensional and gamified tool which can be used:

  • for learning purposes in educational settings
  • as a fast-tracking tool for interdisciplinary problem solving.

CoNavigator is a tool which allows groups to collaborate on a 3-dimensional visualisation of the interdisciplinary topography of a given field or theme. It addresses the contextual and local circumstances and the unique combinations of members in collaborative teams. CoNavigator is therefore short for both Context Navigation and Collaboration Navigation. The process of applying the tool takes around 3 hours.

Using CoNavigator

CoNavigator is composed of writable tiles and cubes to enable rapid, collaborative visualisation, as shown in the first figure below. The tactile nature of the tool is designed to encourage collaboration and negotiation over a series of defined steps.

Making the Tacit Visible and Tangible

Each participant makes a personal tool swatch. By explaining their skills to a person with a completely different background, the participant is forced to re-evaluate, re-formulate, and translate skills in a way that increases their own disciplinary awareness. Each competency that is identified is written onto a separate tool swatch.

katrine-lindvig
Katrine Lindvig (biography)

line-hillersdal
Line Hillersdal (biography)

david-earle
David Earle (biography)

Continue reading