Yin-yang thinking – A solution to dealing with unknown unknowns?

By Christiane Prange and Alicia Hennig

author - christiane prange
Christiane Prange (biography)

Sometimes, we wonder why decisions in Asia are being made at gargantuan speed. How do Asians deal with uncertainty arising from unknown unknowns? Can yin-yang thinking that is typical for several Asian cultures provide a useful answer?

Let’s look at differences between Asian and Western thinking first. Western people tend to prefer strategic planning with linear extrapolation of things past. The underlying mantra is risk management to buffer the organization and to protect it from harmful consequences for the business. But juxtaposing risk and uncertainty is critical. Under conditions of uncertainty, linearity is at stake and risk management limited. Continue reading

Blackboxing unknown unknowns through vulnerability analysis

By Joseph Guillaume

Author - Joseph Guillaume
Joseph Guillaume (biography)

What’s a productive way to think about undesirable outcomes and how to avoid them, especially in an unpredictable future full of unknown unknowns? Here I describe the technique of vulnerability analysis, which essentially has three steps:

  • Step 1: Identify undesirable outcomes, to be avoided
  • Step 2: Look for conditions that can lead to such outcomes, ie. vulnerabilities
  • Step 3: Manage the system to mitigate or adapt to vulnerable conditions.

The power of vulnerability analysis is that, by starting from outcomes, it avoids making assumptions about what led to the vulnerabilities. Continue reading

Managing innovation dilemmas: Info-gap theory

By Yakov Ben-Haim

Author - Yakov Ben-Haim
Yakov Ben-Haim (biography)

To use or not to use a new and promising but unfamiliar and hence uncertain innovation? That is the dilemma facing policy makers, engineers, social planners, entrepreneurs, physicians, parents, teachers, and just about everybody in their daily lives. There are new drugs, new energy sources, new foods, new manufacturing technologies, new toys, new pedagogical methods, new weapon systems, new home appliances and many other discoveries and inventions.

Furthermore, the innovation dilemma occurs even when a new technology is not actually involved. The dilemma arises from new attitudes, like individual responsibility for the global environment, or new social conceptions, like global allegiance and self-identity transcending all nation-states. Even the enthusiastic belief in innovation itself as the source of all that is good and worthy entails a dilemma of innovation. Continue reading

Designing scenarios to guide robust decisions

By Bonnie McBain

Bonnie McBain (biography)

What makes scenarios useful to decision makers in effectively planning for the future? Here I discuss three aspects of scenarios:

  • goals;
  • design; and,
  • use and defensibility.

Goals of scenarios

Since predicting the future is not possible, it’s important to know that scenarios are not predictions. Instead, scenarios stimulate thinking and conversations about possible futures. Continue reading

Managing uncertainty in decision making: What can we learn from economics?

By Siobhan Bourke and Emily Lancsar

Siobhan Bourke (biography)

How can researchers interested in complex societal and environmental problems best understand and deal with uncertainty, which is an inherent part of the world in which we live? Accidents happen, governments change, technological innovation occurs making some products and services obsolete, markets boom and inevitably go bust. How can uncertainty be managed when all possible outcomes of an action or decision cannot be known? In particular, are there lessons from the discipline of economics which have broader applicability? Continue reading

What every interdisciplinarian should know about p values

By Alice Richardson

Alice Richardson (biography)

In interdisciplinary research it’s common for at least some data to be analysed using statistical techniques. Have you been taught to look for ‘p < 0.05’ meaning that there is a less than 5% probability that the finding occurred by chance? Do you look askance at your statistician colleagues when they tell you it’s not so simple? Here’s why you need to believe them.

The whole focus on p < 0.05 to the exclusion of all else is a historical hiccup, based on a throwaway line in a manual for research workers. That manual was produced by none other than R.A. Fisher, giant of statistical inference and inventor of statistical methods ranging from the randomised block design to the analysis of variance. But all he said was that “[p = 0.05] is convenient to take … as a limit in judging whether a deviation is to be considered significant or not.” Convenient, nothing more! Continue reading