Synthesis centers as critical research infrastructure

Community member post by Andrew Campbell

andrew-campbell
Andrew Campbell (biography)

When we think of research infrastructure, it is easy to associate astronomers with telescopes, oceanographers with research vessels and physicists with particle accelerators.

But what sort of research infrastructure (if any) do we need in order to do more effective multidisciplinary, interdisciplinary and transdisciplinary research on big, complex, ‘wicked’ challenges like climate change or food security?

Some eminent colleagues and I argue in a new paper (Baron et al., 2017) that the answers include:

  • good coffee, beer, wine and food;
  • in distraction-free places that are nevertheless supported by leading-edge informatics;
  • which attract diverse groups of scientists (by discipline, gender, age, career stage, location);
  • to work on and across heterogeneous datasets; and,
  • in skilfully facilitated processes designed to foster ‘a balanced mix of rationality and adventurous association… creative unstructured thought and discussion.’

More than twenty years ago, the US National Science Foundation (NSF), the Ecological Society of America and the Association of Ecological Research Centers identified the need for a place to undertake “multidisciplinary analysis of complex environmental problems” with the core functions being seen as advancing basic science, organising complex information so as to be more useful for decision-makers, and making better use of existing data.

The NSF funded the National Center for Ecological Analysis and Synthesis (NCEAS) at the University of California, Santa Barbara from 1995, and subsequently invested in a further three centers, the most recent being the National Socio-Environmental Synthesis Center (SESYNC) at the University of Maryland. Over that period more than a dozen other synthesis centres have been established around the world, funded by a range of organisations.

The most common activity of synthesis centres is support for working groups of up to 20 people, who come together for intensive collaboration:

  • for several days at a time;
  • often across a series of meetings over up to three years; and,
  • supported by dedicated research staff and sophisticated informatics to assist with integration and analysis of heterogeneous data.

Teams are usually constructed with care to deliberately combine experts with different backgrounds, expertise and perspectives to explore a given topic through multiple lenses.

In terms of physical infrastructure, scientific synthesis centres may indeed look like boutique hotels in cool places with top notch WiFi, characterised more by their break-out spaces and nearby restaurants and mountain bike trails than their labs or auditoriums. But the real infrastructure is mostly not hardware but informatics software and insight about dynamic social processes of scientific discourse and inquiry.

The six critical ingredients identified in our paper (the authors of which include ten current or former directors of synthesis centres) are:

  1. active management of social dynamics and intellectual space;
  2. cutting edge informatics;
  3. organisational flexibility;
  4. support for students, postdocs and sabbatical fellows;
  5. diversity within working groups; and,
  6. offering time and space (physical and intellectual) for group associative thinking.

These are in line with factors identified by Margaret Palmer and colleagues in their blog post on eight institutional practices to support interdisciplinary research.

Parker and Hackett (2012) note that focused time away from outside distraction led to “hot spots and hot moments” of unusually high creativity, enabling potentially transformative science.

There is strong bibliometric evidence that collaborations fostered in synthesis centres (reflected in co-authorship) last well beyond the synthesis-centre activity, and that interdisciplinary collaboration and the number of co-authors increases research productivity and impact. Bob Costanza and colleagues (1997) produced one of the most highly-cited papers of all time through an NCEAS workshop.

Telescopes, research vessels and particle accelerators are undoubtedly important tools for enabling humans to understand more about our world. But coming up with policy and management solutions for grand societal challenges requires much more than fancy scientific ‘kit’. It requires the combined insights of talented people from multiple perspectives (not all of them scientific), using multiple, diverse and often incomplete data, to develop new ideas interactively. We are learning from experience some of the ingredients for fostering such processes, and our new paper attempts to distil these lessons.

I’d welcome readers’ comments on your experiences in synthesis centers, or other focused time away from outside distraction.

To find out more:
Baron, J. S., Specht, A., Garnier, E., Bishop, P., Campbell, A., Davis, F. W., Fady, B., Field, D., Gross, L. J., Guru, S. M., Halpern, B. S., Hampton, S. E., Leavitt, P. R., Meagher, T. R., Ometto, J., Parker, J. N., Price, R., Rawson, C. H., Rodrigo, A., Sheble, L. A., and Winter, M. (2017). Synthesis centers as critical research infrastructure. BioScience, 67(8): 750-759. Online (Free): https://www.sciencebase.gov/catalog/item/594800f9e4b062508e3442f7. Online (DOI): 10.1093/biosci/bix053

References:

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P. and van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387: 253-260.

Parker J. N. and Hackett E. J. (2012). Hot spots and hot moments in scientific collaborations and social movements. American Sociological Review, 77: 21–44.

Biography: Andrew Campbell is the Chief Executive Officer of the Australian Centre for International Agricultural Research, in Canberra Australia. He is also a Visiting Fellow at the Australian National University’s Fenner School of Environment and Society, and a Commissioner with the International Union for Conservation of Nature (IUCN) World Commission on Protected Areas. His research interests span the interactions between climate, water, energy and agrifood systems, and the interface between knowledge, science and policy.

Responsive research – simple, right? The AskFuse case study

Community member post by Rosemary Rushmer

rosemary-rushmer
Rosemary Rushmer (biography)

Researchers are constantly being challenged to demonstrate that their research can make a difference and has impact. Practice and policy partners are similarly challenged to demonstrate that their decisions and activity are informed by the evidence base. It sounds like all we need to do is join the two groups together – simple, right?

In Fuse (the Centre for Translational Research in Public Health, www.fuse.ac.uk) we wanted to do exactly that. We wanted to supply the evidence that end-users said they wanted (supply and demand), and make it easy for them to access and use research evidence.

Yet, we knew that current approaches to supplying evidence (briefs, guidelines, publications) do not work as well as we once thought they did. It needed a re-think… Continue reading

Scaling up amidst complexity

Community member post by Ann Larson

ann-larson
Ann Larson (biography)

How can new or under-utilized healthcare practices be expanded and institutionalized to achieve audacious and diverse global health outcomes, ranging from eliminating polio to reversing the rise in non-communicable diseases? How can complex adaptive systems with diverse components and actors interacting in multiple ways with each other and the external environment best be dealt with? What makes for an effective scale-up effort?

Four in-depth case studies of scale-up efforts were used to explore if there were different pathways to positively change a complex adaptive system. Continue reading

Successful implementation demands a great liaison person: Nine tips on making it work

Community member post by Abby Haynes on behalf of CIPHER (Centre for Informing Policy in Health with Evidence from Research)

cipher-group
CIPHER Sub-group (Participants)

When external providers deliver a complex program in an organisation, it is crucial that someone from that organisation—a liaison person—gives ‘insider’ advice and acts as a link between their organisation and the program providers. What are the characteristics to look for in filling that role? And how can liaison people best be supported? Continue reading

Six actions to mobilise knowledge in complex systems

Community member post by Bev J. Holmes and Allan Best

bev-holmes_original
Bev J. Holmes (biography)

What are the practical implications of mobilising knowledge in complex systems? How can the rules, regulations, incentives and long-entrenched power structures of a system be changed so that knowledge mobilisation is maximized?

allan-best
Allan Best (biography)

We propose six interdependent actions, briefly described below, undertaken at two levels, by those who: (1) are managing specific knowledge mobilization initiatives (initiative managers), and (2) are in a position to make the environment more receptive to change (key influencers). These people may not necessarily be involved in specific initiatives. Continue reading

Complexity, diversity, modelling, power, trust, unknowns… Who is this blog for?

Community member post by Gabriele Bammer

Gabriele Bammer (biography)

This is the first annual “state of the blog” review.

This is a blog for researchers who:

  • want better concepts and methods for understanding and acting on complex real-world problems – problems like refugee crises, global climate change, and inequality.
  • are intrigued by the messiness of how components of a problem interact, how context can be all-important and how power can stymie or facilitate action.
  • understand that complex problems do not have perfect solutions; instead that “best possible” or “least worst” solutions are more realistic aims.
  • enjoy wrangling with unknowns to better manage, or even head-off, unintended adverse consequences and unpleasant surprises.
  • are keen to look across the boundaries of their own expertise to see what concepts and methods are on offer from those with different academic backgrounds grappling with other kinds of problems.
  • want to join forces to build a community which freely shares concepts and methods for dealing with complex problems, so that these become a stronger part of the mainstream of academic research and education.

November saw this blog’s first anniversary and this 100th blog post reviews what we are aiming for and how we are tracking. Continue reading