By Tuomas J. Lahtinen, Joseph H. A. Guillaume, Raimo P. Hämäläinen

How can we identify and evaluate decision forks in a modelling project; those points where a different decision might lead to a better model?
Although modellers often follow so called best practices, it is not uncommon that a project goes astray. Sometimes we become so embedded in the work that we do not take time to stop and think through options when decision points are reached.

One way of clarifying thinking about this phenomenon is to think of the path followed. The path is the sequence of steps actually taken in developing a model or in a problem solving case. A modelling process can typically be carried out in different ways, which generate different paths that can lead to different outcomes. That is, there can be path dependence in modelling.

Recently, we have come to understand the importance of human behaviour in modelling and the fact that modellers are subject to biases. Behavioural phenomena naturally affect the problem solving path. For example, the problem solving team can become anchored to one approach and only look for refinements in the model that was initially chosen. Due to confirmation bias, modelers may selectively gather and use evidence in a way that supports their initial beliefs and assumptions. The availability heuristic is at play when modellers focus on phenomena that are easily imaginable or recalled. Moreover particularly in high interest cases strategic behaviour of the project team members can impact the path of the process.