Disciplinary diversity widget: how does your team measure up?

By Brooke Struck

Brooke Struck (biography)

Would it be useful to have a tool to quickly measure the disciplinary diversity of your team? At Science-Metrix we’ve created a widget for just such a purpose. In this post, I’ll explain what the disciplinarity widget does, how to use it, how to interpret the measurements and how we are refining the tool.

How is disciplinary diversity measured?

For several years, Science-Metrix has maintained a classification of research into a three-level taxonomy, arranging research into domains, fields and subfields. We have also developed several approaches to assess the conceptual proximity of these subfields to each other, based on how often material from these subfields is used in combination.

With the taxonomy in hand, and a proximity matrix relating the subfields to each other, we can calculate disciplinary mix using a three-dimensional approach. The first dimension is simply the number of different subfields integrated, the second dimension is the balance between the subfields being represented, and the third dimension is the conceptual distance between them.

For example, a team that consists of five biologists and one chemist is considered less diverse than a team of three biologists and three chemists, because the latter team is more balanced between the subfields involved. Similarly, a team with five biologists and one chemist is considered less diverse than a team with five biologists and one performing artist, because biology and chemistry are conceptually more proximate to each other than are biology and the performing arts.

How do you use the widget?

Using the widget is intended to be very simple. Each team member needs to be tagged for the relevant subfield that they represent. In order to collect this information, the widget asks you to name your team and identify the sector in which you’re working, and it then presents you with a menu to navigate through our three-level taxonomy and identify your subfield.

Once you’ve inputted your own information, a link is provided for information to be supplied for your teammates as well—a link that you can send to your teammates, or that you yourself can click through in order to enter information on their behalf.

How do you know what subfield to associate yourself with? At Science-Metrix, we generally recommend using your highest level of education (or the degree most recently completed, as a tiebreaker). However, in some cases, people have ventured into completely new intellectual areas since finishing their studies, so it is perhaps more relevant for them to identify their new area of expertise instead.

For now, each person can only choose one subfield to represent themselves in the measurement. If you find this particularly constraining, let us know, as allowing multiple subfields per person is a feature we can consider building if this challenge is widespread.

What do the results mean?

The scores reflect:

  • Number of sub-fields represented
  • Balance between the disciplines represented
  • Intellectual distance between the subfields represented.

Scores on this indicator range from 0 to 1, 0 being completely monodisciplinary and 1 being maximally diverse. The ranges of these scores can be interpreted as follows:

  • 0 means totally disciplinary, everyone from the same background.
  • 0.1–0.2 is a low score, meaning that there is one “home” discipline with a few “secondary” areas also included.
  • 0.3–0.5 is a mid-range score, meaning that there is a balance amongst the disciplines represented but that they’re all still quite clustered in one intellectual area.
  • 0.6 and above is a high score, meaning that several different disciplines are involved, they’re relatively balanced (rather than a “home and guest” model), and they’re drawn from a broad intellectual diversity.

Collecting widget data

We’re collecting anonymized data through the widget to see how diverse the teams are out there, what kinds of disciplinary combinations might crop up, and so forth. If we can characterise patterns broadly enough, they can contribute valuable information for users in interpreting their own scores.

The main data we collect are the disciplinary diversity scores, which we’ll be able to slice by sector (inputted manually) and by geographic area (collected via the Internet Protocol (IP) address stamped on the submission). We’ve left a space for you to input your email if you’d like to receive updates about new features built into the widget, and findings that we’ve uncovered looking at patterns in the inputted data. We designed the widget to log your email independently from your team’s data.

Widget development: Seeking feedback!

We’re currently working to improve the widget, so we’re looking for feedback! At a User Experience (UX) event in Montreal in early 2018, audience members commented on the smooth workflow of the tool, but pointed out that we’ve rolled together two distinct functions:

  • Calculation: to measure the score of an existing team
  • Exploration: to experiment with various permutations of potential teams.

Data collected to date bears out this remark as about half the teams entered have the word “Test” in their name.

What’s the value to you of knowing about disciplinary diversity? If you’ve tried the widget, is there something about the tool that feels clunky or unintuitive to use? Is there another tool that you’d like to see this widget integrate with, like maybe your Open Researcher and Contributor ID (ORCID) (and the ORCIDs of your colleagues)?

Note from author: After late 2018 it was no longer possible to access the disciplinary widget.

This blog post is adapted from a longer version “Team diversity widget: how do you measure up?” which originally appeared on the Science-Metrix blog, but is no longer publicly available.

Biography: Brooke Struck is a senior policy officer at Science-Metrix Inc. in Montreal, Canada, where his role includes contributing to project design and management, research and analysis, reporting, and communication with clients. He also leads research projects for the development of new indicators to measure scientific activity. These projects integrate research from the history and philosophy of science with emerging policy priorities and bibliometric innovations to ensure that new indicators are both strategically relevant to client needs and methodologically robust. Additionally, he contributes synthetic and critical assessments of science governance and policy developments through the ScienceMetrics.org blog.

4 thoughts on “Disciplinary diversity widget: how does your team measure up?”

  1. I was particularly struck by your comment about each team member nominating one field and whether this is restrictive. I don’t have any particular evidence for this (and may reflect a personal bias), but I feel teams with diverse disciplines work better if there’s members who are personally diverse, able to provide a conceptual bridge between the more disciplinary specific team members. And I think this is particularly important where the disciplines involved are relatively distant.

    I use computational methods to develop social science methods that are relevant for public health issues. If I enter those three disciplines into your tool as three team members (me, myself, and I), I have a personal interdisciplinary score of 0.54. But I find that I introduce myself as a mathematician when working with public health research or social scientists, and a social scientist when working with mathematical modellers or public health researchers. In my pre-academic life, many of my jobs were specifically about translating policy goals into data requests and advising on the implications of data to policy analysts.

    I think that having multiple disciplines would be a very useful addition to the tool. Further, I think it would be particularly interesting to see whether the presence of members with multiple disciplines is associated with team success. If so, the tool could also be used to identify potential fractures in the team.

    • Hi Jen—thanks very much for your interest in the widget and for your comment!

      I agree that personal diversity is a really valuable component when integrating diverse teams. First-hand experience with incommensurability (https://i2insights.org/2018/03/27/incommensurability-in-interdisciplinarity/) can help us to better navigate the challenge when we encounter it again. That experience can also help us to lead teams to navigate these obstacles, where some members of which may be encountering these obstacle for the first time.

      In Socratic fashion, I’ll point out that humility about one’s own field(s) and one’s own knowledge is also very important when dealing with incommensurability! Aspects of personality and virtue are important for integration, even if the methodological aspects get so much air time in discussions about this topic.

      In terms of the practical use of this widget, I wonder whether your comment already contains the seeds of the solution: you introduce yourself differently depending on who you’re working with. When inputting information, perhaps it would be more helpful for us to point people towards their role in the team (disclosed in your comment by how you introduce yourself) rather than to their major field of study/work.

      As for building in the functionality of identifying several areas for a single team member, we’re looking at how that would be possible. It would be easy to ask people to input the information, of course, but how to compute scores based on these fractions is a philosophical and methodological topic that we haven’t come to agreement on yet. (Perhaps I can drum up some interest in blogging about a few case studies from our discussions, to illustrate what’s at stake in choosing one path as opposed to another.)

      In the mean time, I hope that the widget continues to be a useful resource to spark discussion. Ultimately, the more we all argue about this tool, the better we will all understand the phenomenon of interdisciplinarity—and that’s really our objective with the widget itself.


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: