Synthesis centers as critical research infrastructure

Community member post by Andrew Campbell

andrew-campbell
Andrew Campbell (biography)

When we think of research infrastructure, it is easy to associate astronomers with telescopes, oceanographers with research vessels and physicists with particle accelerators.

But what sort of research infrastructure (if any) do we need in order to do more effective multidisciplinary, interdisciplinary and transdisciplinary research on big, complex, ‘wicked’ challenges like climate change or food security?

Some eminent colleagues and I argue in a new paper (Baron et al., 2017) that the answers include:

  • good coffee, beer, wine and food;
  • in distraction-free places that are nevertheless supported by leading-edge informatics;
  • which attract diverse groups of scientists (by discipline, gender, age, career stage, location);
  • to work on and across heterogeneous datasets; and,
  • in skilfully facilitated processes designed to foster ‘a balanced mix of rationality and adventurous association… creative unstructured thought and discussion.’

More than twenty years ago, the US National Science Foundation (NSF), the Ecological Society of America and the Association of Ecological Research Centers identified the need for a place to undertake “multidisciplinary analysis of complex environmental problems” with the core functions being seen as advancing basic science, organising complex information so as to be more useful for decision-makers, and making better use of existing data.

The NSF funded the National Center for Ecological Analysis and Synthesis (NCEAS) at the University of California, Santa Barbara from 1995, and subsequently invested in a further three centers, the most recent being the National Socio-Environmental Synthesis Center (SESYNC) at the University of Maryland. Over that period more than a dozen other synthesis centres have been established around the world, funded by a range of organisations.

The most common activity of synthesis centres is support for working groups of up to 20 people, who come together for intensive collaboration:

  • for several days at a time;
  • often across a series of meetings over up to three years; and,
  • supported by dedicated research staff and sophisticated informatics to assist with integration and analysis of heterogeneous data.

Teams are usually constructed with care to deliberately combine experts with different backgrounds, expertise and perspectives to explore a given topic through multiple lenses.

In terms of physical infrastructure, scientific synthesis centres may indeed look like boutique hotels in cool places with top notch WiFi, characterised more by their break-out spaces and nearby restaurants and mountain bike trails than their labs or auditoriums. But the real infrastructure is mostly not hardware but informatics software and insight about dynamic social processes of scientific discourse and inquiry.

The six critical ingredients identified in our paper (the authors of which include ten current or former directors of synthesis centres) are:

  1. active management of social dynamics and intellectual space;
  2. cutting edge informatics;
  3. organisational flexibility;
  4. support for students, postdocs and sabbatical fellows;
  5. diversity within working groups; and,
  6. offering time and space (physical and intellectual) for group associative thinking.

These are in line with factors identified by Margaret Palmer and colleagues in their blog post on eight institutional practices to support interdisciplinary research.

Parker and Hackett (2012) note that focused time away from outside distraction led to “hot spots and hot moments” of unusually high creativity, enabling potentially transformative science.

There is strong bibliometric evidence that collaborations fostered in synthesis centres (reflected in co-authorship) last well beyond the synthesis-centre activity, and that interdisciplinary collaboration and the number of co-authors increases research productivity and impact. Bob Costanza and colleagues (1997) produced one of the most highly-cited papers of all time through an NCEAS workshop.

Telescopes, research vessels and particle accelerators are undoubtedly important tools for enabling humans to understand more about our world. But coming up with policy and management solutions for grand societal challenges requires much more than fancy scientific ‘kit’. It requires the combined insights of talented people from multiple perspectives (not all of them scientific), using multiple, diverse and often incomplete data, to develop new ideas interactively. We are learning from experience some of the ingredients for fostering such processes, and our new paper attempts to distil these lessons.

I’d welcome readers’ comments on your experiences in synthesis centers, or other focused time away from outside distraction.

To find out more:
Baron, J. S., Specht, A., Garnier, E., Bishop, P., Campbell, A., Davis, F. W., Fady, B., Field, D., Gross, L. J., Guru, S. M., Halpern, B. S., Hampton, S. E., Leavitt, P. R., Meagher, T. R., Ometto, J., Parker, J. N., Price, R., Rawson, C. H., Rodrigo, A., Sheble, L. A., and Winter, M. (2017). Synthesis centers as critical research infrastructure. BioScience, 67(8): 750-759. Online (Free): https://www.sciencebase.gov/catalog/item/594800f9e4b062508e3442f7. Online (DOI): 10.1093/biosci/bix053

References:

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P. and van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387: 253-260.

Parker J. N. and Hackett E. J. (2012). Hot spots and hot moments in scientific collaborations and social movements. American Sociological Review, 77: 21–44.

Biography: Andrew Campbell is the Chief Executive Officer of the Australian Centre for International Agricultural Research, in Canberra Australia. He is also a Visiting Fellow at the Australian National University’s Fenner School of Environment and Society, and a Commissioner with the International Union for Conservation of Nature (IUCN) World Commission on Protected Areas. His research interests span the interactions between climate, water, energy and agrifood systems, and the interface between knowledge, science and policy.

Transkillery! What skills are needed to be a boundary crosser?

Community member post by Dena Fam, Tanzi Smith and Dana Cordell

dena-fam_2
Dena Fam (biography)

What skills and dispositions are required by researchers and practitioners in transdisciplinary research and practice in crossing boundaries, sectors and paradigms?

The insights here come from interviews with 14 internationally recognized transdisciplinary researchers and practitioners, chosen from a diverse range of research and practice-based perspectives.

tanzi-smith
Tanzi Smith (biography)

Here we focus on:

1) skills for specific tasks such as facilitation of a meeting, crafting a well-written report, and communicating effectively across disciplines; and,

cordell
Dana Cordell (biography)

2) dispositions, attitudes, orientations and temperaments of an effective researcher/practitioner, i.e., as a way of being.

 

Six categories of skills and dispositions

The core skills and dispositions of an exceptional transdisciplinary researcher/practitioner can be grouped into six categories, illustrated in the figure below. Continue reading

Collaboration, difference and busyness

Community member post by Gabriele Bammer

gabriele-bammer
Gabriele Bammer (biography)

What are the ingredients of successful research collaboration? How can we make collaboration work when we are all getting busier?

One of the best guides to success in collaborative team work was produced by Michelle Bennett, Howard Gadlin and Samantha Levine-Findlay in 2010. Built on the experience of researchers at the US National Institutes of Health, they explored: preparing for collaboration, selecting team members, fostering trust, sharing credit, handling conflict and more.

An additional way of thinking about collaboration that I have found useful (Bammer 2008) is to consider it as a process of harnessing and managing differences. Continue reading

In praise of multidisciplinarity

Community member post by Gabriele Bammer

gabriele-bammer
Gabriele Bammer (biography)

What characterizes multidisciplinary research? When is it most appropriate? What does it take to do it well? Multidisciplinarity often gets a bad rap, being seen as less sophisticated than interdisciplinarity and transdisciplinarity. But does it have its own important role in dealing with complex social and environmental problems?

Multidisciplinary research has two primary characteristics:

  1. different disciplines independently shine their light on a particular problem, and
  2. synthesis happens at the end and can be undertaken by anyone.

Unlike interdisciplinary and transdisciplinary research, there is no attempt to agree upfront on either a problem definition or on how the different perspectives will be brought together. Continue reading