Three “must have” steps to improve education for collaborative problem solving

Community member post by Stephen M. Fiore

Stephen M. Fiore (biography)

Many environmental, social, and public health problems require collaborative problem solving because they are too complex for an individual to work through alone. This requires a research and technical workforce that is better prepared for collaborative problem solving. How can this be supported by educational programs from kindergarten through college? How can we ensure that the next generation of researchers and engineers are able to effectively engage in team science?

Drawing from disciplines that study cognition, collaboration, and learning, colleagues and I (Graesser et al., 2018) make three key recommendations to improve research and education with a focus on instruction, opportunities to practice, and assessment. Across these is the need to attend to the core features of teamwork as identified in the broad research literature on groups and teams.

Systematic use of instructional strategies

First and foremost, researchers should collaborate with educators to make more systematic use of instructional strategies devised to teach components of collaboration. Research on groups and teams has produced methods that focus on team processes relevant to complex forms of work.

For example, knowledge building training emphasizes communicative processes that make explicit the structure of team member knowledge (eg., mental models), as well as assumptions and interpretations team members have about their knowledge. External representations make such knowledge explicit and concrete and build shared understanding.

Also relevant is training that draws attention to the team process following interactions. Team reflexivity training requires that members reflect on prior performance episodes by focusing on met or unmet objectives, strategies used to address task needs, and efficiency of collaborative interactions. Such training could be improved by further research both on effective interventions and on how students come to learn team processes that improve future interactions.

Opportunities for practice

Second, in addition to systematic implementation of instruction on team process, students need opportunities for practice. Collaboration in the classroom is common in science and engineering, and education level and nature of the content will dictate the team and task context.

For example, in introductory science classes, students may collaborate while learning about fundamental physics concepts, how they should be integrated, and applied, for particular problems. At these levels, knowledge is usually unevenly distributed across students such that they need to communicate what each knows as well as their interpretation of what needs to be applied. Teams need to discuss member contributions and evaluate their appropriateness while also using logical analyses to identify and evaluate solutions. In these stages of learning, basic interpersonal competencies associated with relationship management (eg., encourage participation) and communication (eg., listening to learn), are needed.

At more advanced levels, students address problems that require richer domain knowledge, as well as connection to more complicated scenarios. For example, upper level students might collaborate on complex socio-environmental problems such as overfishing wherein stakeholder factors necessitate consideration of species population dynamics and local economies. At these levels, collaboration requires sophisticated forms of perspective taking to consider alternative views of problem elements.

Considering the need to provide more structured practice opportunities, problem-based learning is a method tested in a variety of settings with meta-analytic support documenting effectiveness. Teams work on real-world problems, first discussing any lack of understanding and identifying gaps in knowledge. From this, they form explicit learning goals and collaborate to gather and integrate knowledge necessary to produce a solution. Research must thoroughly examine these in the classroom to understand how they can best provide the contextual grounding that fosters integration of collaboration skills.

Assessment to measure team work

Finally, more consistent assessments that measure teamwork to provide diagnostic feedback on collaboration are also necessary. To achieve this, there should be a more systematic integration of methods on team training with the educational programs devised for learning to work in teams. This includes consideration of self-ratings of soft skills as well as peer-ratings that assess categories of team involvement like contribution to the team’s work and keeping the team on track. Also needed are assessments of interpersonal competencies such as conflict resolution (eg., reactions to conflict) and assertive communication (eg., addressing differences without intimidation).

Critical to this assessment is ensuring students receive feedback regularly, can compare it to self-assessments, and have opportunities to calibrate it in future collaborations. Research must explore how to incentivize collaborative problem solving skills and integrate grades on collaboration into overall student assessment.

Concluding questions

Do you have successful experiences of teaching and assessing team work to share? What are the key concepts that you teach? Which pedagogical strategies have you found helpful? What questions must the burgeoning “Science of Team Science” pursue to ensure effectiveness in collaborative problem solving?

To find out more:
Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W. and Hesse, F. W. (2018). Advancing the science of collaborative problem solving. Psychological Science in the Public Interest, 19, 2: 59-92. Online:

Biography: Stephen M. Fiore PhD is Director, Cognitive Sciences Laboratory, and Professor with the University of Central Florida’s Cognitive Sciences Program in the Department of Philosophy and Institute for Simulation and Training. He is Past-President of the Interdisciplinary Network for Group Research, a founding committee member for the annual Science of Team Science Conference and founding board member for the International Network for the Science of Team Science. He maintains a multidisciplinary research interest that incorporates aspects of the cognitive, social, organizational, and computational sciences in the investigation of learning and performance in individuals and teams.

Introducing interdisciplinary postgraduate degrees? Seven meta-considerations

Community member post by Dena Fam, Scott Kelly, Tania Leimbach, Lesley Hitchens and Michelle Callen

Dena Fam (biography)

What is required to plan, introduce and standardize interdisciplinary learning in higher education?

In a two-year process at the University of Technology Sydney we identified seven meta-considerations (Fam et al., 2018). These are based on a literature review of best practice of interdisciplinary programs internationally, as well as widespread consultation and engagement across the university. Each meta-consideration is illustrated by a word cloud and a key quotation from our consultations. Continue reading

Institutionalising interdisciplinarity: Lessons from Latin America / Institucionalizar la interdisciplina: Lecciones desde América Latina

Community member post by Bianca Vienni Baptista, Federico Vasen and Juan Carlos Villa Soto

A Spanish version of this post is available

What lessons and challenges about institutionalising interdisciplinarity can be systematized from experiences in Latin American universities?

We analyzed three organizational structures in three different countries to find common challenges and lessons learned that transcend national contexts and the particularities of individual universities. The three case studies are located in:

  • Universidad de Buenos Aires in Argentina. The Argentinian center (1986 – 2003) was created in a top-down manner without participation of the academic community, and its relative novelty in organizational terms was also a cause of its instability and later closure.
  • Universidad de la República in Uruguay. The Uruguayan case, started in 2008, shows an innovative experience in organizational terms based on a highly interactive and participatory process.
  • Universidad Nacional Autónoma de México. The Mexican initiative, which began in 1986, shows a center with a network structure in organizational terms where the focus was redefined over time.

All three centers showed an evolutionary path in which they simultaneously tried to adapt to the characteristics of the production of interdisciplinary knowledge and to the culture of the host institutions. Flexibility in this evolution seems to be a necessary condition for survival.

We found the following common lessons:

  • There is a bias in disciplinary-based academic assessment criteria, which does not consider the specific characteristics of interdisciplinary research and still punishes researchers who engage in collaborative research with partners outside academia. Specific criteria and assessment committees designed by interdisciplinary researchers are needed.
  • Interdisciplinary research requires long periods of preparation, mainly due to the collaborative dynamics, which also makes it necessary to revise assessment criteria.
  • Assessment committees should be made up of academic professionals specialized in interdisciplinary topics rather than a group of individuals representing different disciplines.
  • There is a need to explore new funding sources, especially external funds. So far, the main source of funding is still each national state.
  • There is also an urgency to promote academic publication to enhance the dissemination of interdisciplinary research and studies.
Bianca Vienni Baptista (biography)

Federico Vasen (biography)

Juan Carlos Villa Soto (biography)

Continue reading

Linking learning and research through transdisciplinary competences

Community member post by BinBin Pearce

BinBin Pearce (biography)

What are the objectives of transdisciplinary learning? What are the key competences and how do they relate to both educational goals and transdisciplinary research goals? At Transdisciplinarity Lab (TdLab), our group answered these questions by observing and reflecting upon the six courses at Bachelor’s, Master’s, and PhD levels that we design and teach in the Department of Environmental Systems Science at ETH Zurich, Switzerland.

Six competence fields describe what we hope students can do with the help of our courses. A competence field contains a set of interconnected learning objectives for students. We use these competence fields as the basis for curriculum design. Continue reading

Using the arts and design to build student creative collaboration capacity

Community member post by Edgar Cardenas

Edgar Cardenas (biography)

How can undergraduate and graduate students be helped to build their interdisciplinary collaboration capacity? In particular, how do they build capacity between the arts and other disciplines?

In 2018, I co-facilitated the annual, 3-day Emerging Creatives Student Summit, an event for approximately 100 undergraduate and graduate students from 26 universities organized by the Alliance for the Arts in Research Universities. Students’ majors ranged from the sciences, engineering, music, arts, and design.

The aim of the summit is to give students an opportunity to collaborate on projects that incorporate creativity and the arts. Continue reading

The university campus as a transdisciplinary living laboratory

Community member post by Dena Fam, Abby Mellick Lopes, Alexandra Crosby and Katie Ross

How can transdisciplinary educators help students reflexively understand their position in the field of research? Often this means giving students the opportunity to go beyond being observers of social reality to experience themselves as potential agents of change.

To enable this opportunity, we developed a model for a ‘Transdisciplinary Living Lab’ (Fam et al., forthcoming). This builds on the concept of a collaborative test bed of innovative approaches to a problem or situation occurring in a ‘living’ social environment where end-users are involved. For us, the social environment is the university campus. We involved two universities in developing this model – the University of Technology Sydney and Western Sydney University. We aimed to help students explore food waste management systems on campus and to consider where the interventions they designed were situated within global concerns, planetary boundaries and the UN Sustainable Development Goals.

The Transdisciplinary Living Lab was designed and delivered in three largely distinct, yet iterative phases, scaling from individual experiences to a global problem context. These phases of the living lab, which work to integrate personal and professional knowledge and practice, are also shown in the figure below:

1. Entering the living lab was the phase where students were introduced to collaborative teamwork processes, expectations of joint problem formulation and critical reflection on their own position within the system being explored: ‘digging where they stand’. This meant helping students consider their relationships with the food waste system as consumers of food and producers of waste, as well as their potential impact as designers of interventions in that system.

2. Transdisciplinary learning was the second phase where students were introduced to the concept of research as a process of system intervention, as well as skills for co-producing and integrating knowledge in collaboration with diverse partners in the food system. For the Transdisciplinary Living Lab at the University of Technology Sydney this meant listening to, questioning and collaborating with relevant stakeholders in the system to investigate historical and current approaches to the issue, and exploring precedents for dealing with food waste in other parts of the world. Central to this phase was ensuring the sharing of knowledge among the students as it was produced. This meant organising a publically accessible class blog that can be viewed at and weekly debriefs and discussions on insights gained.

Dena Fam (biography)

Abby Mellick Lopes (biography)

Alexandra Crosby (biography)

Katie Ross (biography)

Continue reading