Strengthening the ecosystem for effective team science: A case study from University of California, Irvine, USA

Community member post by Dan Stokols, Judith S. Olson, Maritza Salazar and Gary M. Olson

Dan Stokols (biography)

How can an ecosystem approach help in understanding and improving team science? How can this work in practice?

An Ecosystem Approach

Collaborations among scholars from different fields and their community partners are embedded in a multi-layered ecosystem ranging from micro to macro scales, and from local to more remote regions. Ecosystem levels include:

Judith S. Olson (biography)
  • individual members of teams;
  • the teams to which they belong viewed as organizational units;
  • the broader institutional contexts (eg., universities, research institutes) that support multi-team systems; and,
  • their community and societal milieus (eg., science policies and priorities established by national and international agencies and foundations).
Maritza Salazar (biography)

The success of team-based scholarly and translational initiatives depends on circumstances and events at each of these ecosystem levels and the extent to which they are aligned. For instance, the capacity of a science team to create and apply new knowledge is dependent on the task-specific abilities, interpersonal skills, training, and diverse attributes that individuals bring to their teams. Similarly, the viability and productivity of the team is impacted by the support it receives from institutional leaders and research funding agencies.

Gary M. Olson (biography)

The Team Science Acceleration Lab at the University of California, Irvine

We focus especially on the university-institutional level of the ecosystem and describe an initiative at the University of California, Irvine, USA designed to promote successful cross-disciplinary collaboration on our campus.

We recognize the interdependencies that exist among initiatives undertaken at an institutional level and other facets of the ecosystem, including the importance of articulating university team science programs with the concerns and priorities of community partners and national organizations. The national level is illustrated by the fact that many funding agencies now require cross-disciplinary applicant teams to submit collaboration plans as part of their research proposals. These multiple facets of the team science ecosystem are shown in the figure below.

Key facets of the team science ecosystem, including individual core competencies (orange), a team and its immediate socio-spatial environment (yellow), the institutional contexts of spatially distributed multi-team systems (blue), and broader community and societal influences on team science (green). Links between institutional and societal levels of the ecosystem are denoted by the bi-directional green arrows connecting a particular team (Team 1 or T1) at the center of the diagram with its local environmental, institutional and societal contexts (the yellow, blue, and green circles, respectively). Interdependencies between the team and its immediate socio-spatial environment are shown by the bi-directional purple arrows connecting the orange and yellow circles. In some collaborations, a team must coordinate with spatially removed partners located either at the same institution or at others (eg., multi-team systems spanning two or more universities at the institutional level, and non-academic partners situated in the outermost green circle). These multi-team transactions are denoted in the diagram by the bi-directional pink arrows linking Teams 1, 2, 3, and 4 (T1, T2, T3, T4) (Copyright: Dan Stokols, Judith Olson, Maritza Salazar and Gary Olson).

Establishing a campus culture that supports cross-disciplinary team research requires a comprehensive approach—one that eliminates potential barriers to effective collaboration, and creates structural supports to incentivize inter-departmental, inter-school, and university-community partnerships. From an ecological systems perspective, there are several different “leverage points” within institutional settings that can be aligned so that, together, they exert a positive synergistic influence on faculty and administrators’ efforts to promote cross-disciplinary team science. Six facets of the university-institutional ecosystem that we are initially targeting are:

  1. Ensuring that campus-wide long-range plans emphasize excellence in team science as a strategic institutional goal;
  2. Implementing new promotion and tenure criteria that recognize and reward collaborative contributions to scholarship and translational research, and tools to assist faculty candidates in articulating their contributions to collaborative research as an integral part of personnel reviews;
  3. Establishing equitable criteria for sharing credit among multiple investigators on inter-departmental and inter-school extramural grants;
  4. Allocating seed funding to support the development of new team science initiatives and research centers;
  5. Consulting with facilities planners on the design of team research spaces; and,
  6. Designing and implementing team science workshops and certification courses for faculty and students.

Specific examples of our activities at the Team Science Acceleration Lab include:

  • Working with the university’s Task Force on Interdisciplinarity to ensure that excellence in team science is reflected in the allocation of graduate research and teaching stipends to doctoral candidates working with interdisciplinary research centers and training programs on campus;
  • Planning a campus-wide “Team Science Celebration” event to draw attention to the importance of collaborative scholarship and translational research;
  • Consulting with campus planners on the design of a collaborative research building for the Applied Innovation Institute, which promotes university-community partnerships;
  • Helping develop and implement equitable credit-sharing accounting strategies to incentivize faculty participation in the development of inter-departmental extramural grant proposals and research centers;
  • Developing a new website of team science resources for faculty, students, and administrators;
  • Creating and evaluating a Collaborative Contributions List to help faculty engaged in collaborative scholarship articulate the ways that they’ve contributed to team-based projects as they compile their dossiers for promotion and tenure reviews; and,
  • Presenting team science workshops and courses for departmental and school research directors, members of cross-disciplinary centers and teams (both existing and emerging), and other interested faculty, graduate students, and postdoctoral trainees.

Conclusion

By adopting an ecosystem model for advancing successful team science, we hope to achieve greater synergy toward establishing a campus culture that supports cross-disciplinary discovery, teaching, and translational research. Do you have relevant experience to share? Do you have suggestions for a longitudinal, multi-method study that we’re planning to assess our institution’s cumulative progress toward strengthening cross-disciplinary scholarship, training, and implementation research? We welcome your comments and suggestions.

Further reading:
Bennett, L. M., Gadlin, H. and Marchand, C. (2018). Collaboration and team science field guide. 2nd ed. National Cancer Institute, Bethesda, Maryland, United States of America. Online: https://www.cancer.gov/about-nci/organization/crs/research-initiatives/team-science-field-guide

Börner, K., Contractor, N., Falk-Krzesinski, H. F., Fiore, S. M., Hall, K. L., Keyton, J., Spring, B., Stokols, D., Trochim, W. and Uzzi, B. (2010). A multi-level perspective for the science of team science. Science Translational Medicine, 2, 45

Hall, K., Crowston, K. and Vogel, A. (2014). How to write a collaboration plan. Online: https://www.teamsciencetoolkit.cancer.gov/Public/TSResourceBiblio.aspx?tid=3&rid=3119

Klein, J. T. and Falk-Krzesinski, H. J. (2017). Interdisciplinary and collaborative work: Framing promotion and tenure practices and policies. Research Policy, 46, 6: 1055–61

Zaccaro, S. J., Marks, M. and DeChurch, L. (2012). Multi-team systems: An introduction. In, S. J. Zaccaro, L. DeChurch and M. Marks (Eds).  Multiteam systems: An organization form for dynamic and complex environments, Routledge-Taylor and Francis: London, United Kingdom: pp. 3-32

Acknowledgement:
We thank University of California, Irvine’s Office of Research, Office of Academic Affairs, and Institute for Clinical and Translational Science for their support of this initiative.

Biography: Dan Stokols is Chancellor’s Professor Emeritus at the University of California, Irvine, USA and served as founding Dean of the university’s School of Social Ecology. His research spans the fields of social ecology, environmental and ecological psychology, public health, and transdisciplinary team science. He is author of Social ecology in the digital age and co-author of Enhancing the effectiveness of team science.

Biography: Judith S. Olson is the Donald Bren Professor of Information and Computer Sciences Emerita in the Department of Informatics at the University of California, Irvine, USA. For over 20 years, she has researched teams whose members are not collocated. She co-authored (with Gary Olson) Working together apart: Collaboration over the internet.

Biography: Maritza Salazar is an assistant professor at the Paul Merage School of Business at the University of California, Irvine, USA. Her research focuses on learning and innovation in teams and organizations, especially enhancing the competitiveness of firms, the effectiveness of teams, and the quality of the work experience for individuals. She serves as President of the International Network for the Science of Team Science (INSciTS).

Biography: Gary M. Olson is Professor Emeritus and formerly Donald Bren Professor of Information and Computer Sciences at the University of California, Irvine, USA. The focus of his work has been on how to support small groups of people working on difficult intellectual tasks, particularly when the members of the group are geographically distributed. He co-edited (with Ann Zimmerman and Nathan Bos) Scientific collaboration on the internet.

 

Ten steps to strengthen the environmental humanities

Community member post by Christoph Kueffer and Marcus Hall

Christoph Kueffer (biography)

How might the environmental humanities complement insights offered by the environmental sciences, while also remaining faithful to their goal of addressing complexity in analysis and searching for solutions that are context-dependent and pluralistic?

There is a long and rich tradition of scholarship in the humanities addressing environmental problems. Included under the term ‘environmental studies’ until recently, fields such as the arts, design, history, literary studies, and philosophy are now gathering under the new umbrella of the ‘environmental humanities’. Continue reading

A checklist for documenting knowledge synthesis

Community member post by Gabriele Bammer

Gabriele Bammer (biography)

How do you write-up the methods section for research synthesizing knowledge from different disciplines and stakeholders to improve understanding about a complex societal or environmental problem?

In research on complex real-world problems, the methods section is often incomplete. An agreed protocol is needed to ensure systematic recording of what was undertaken. Here I use a checklist to provide a first pass at developing such a protocol specifically addressing how knowledge from a range of disciplines and stakeholders is brought together.

KNOWLEDGE SYNTHESIS CHECKLIST

1. What did the synthesis of disciplinary and stakeholder knowledge aim to achieve, which knowledge was included and how were decisions made? Continue reading

Structure matters: Real-world laboratories as a new type of large-scale research infrastructure

Community member post by Franziska Stelzer, Uwe Schneidewind, Karoline Augenstein and Matthias Wanner

What are real-world laboratories? How can we best grasp their transformative potential and their relationship to transdisciplinary projects and processes? Real-world laboratories are about more than knowledge integration and temporary interventions. They establish spaces for transformation and reflexive learning and are therefore best thought of as large-scale research infrastructure. How can we best get a handle on the structural dimensions of real-word laboratories?

What are real-world laboratories?

Real-world laboratories are a targeted set-up of a research “infrastructure“ or a “space“ in which scientific actors and actors from civil society cooperate in the joint production of knowledge in order to support a more sustainable development of society.

Although such a laboratory establishes a structure, most discussions about real-world laboratories focus on processes of co-design, co-production and co-evaluation of knowledge, as shown in the figure below. Surprisingly, the structural dimension has received little attention in the growing field of literature.

Overcoming structure as the blind spot

We want to raise awareness of the importance of the structural dimension of real-world laboratories, including physical infrastructure as well as interpretative schemes or social norms, as also shown in the figure below. A real-world laboratory can be understood as a structure for nurturing niche development, or a space for experimentation that interacts (and aims at changing) structural conditions at the regime level.

Apart from this theoretical perspective, we want to add a concrete “infrastructural” perspective, as well as a reflexive note on the role of science and researchers. Giddens’ use of the term ‘structure’ helps to emphasize that scientific activity is always based on rules (eg., rules of proper research and use of methods in different disciplines) and resources (eg., funding, laboratories, libraries).

The two key challenges of real-world laboratories are that:

  1. both scientists and civil society actors are involved in the process of knowledge production; and,
  2. knowledge production takes place in real-world environments instead of scientific laboratories.
Franziska Stelzer (biography)

white-space_approx-6font

Uwe Schneidewind (biography)

white-space_approx-6font

Karoline Augenstein (biography)

white-space_approx-6font

Matthias Wanner (biography)

white-space_approx-6font

Continue reading

Using Ostrom’s social-ecological systems framework to set context for transdisciplinary research: A case study

Community member post by Maria Helena Guimarães

maria-helena-guimaraes
Maria Helena Guimarães (biography)

How can Elinor Ostrom’s social-ecological systems framework help transdisciplinary research? I propose that this framework can provide an understanding of the system in which the transdisciplinary research problem is being co-defined.

Understanding the system is a first step and is necessary for adequate problem framing, engagement of participants, connecting knowledge and structuring the collaboration between researchers and non-academics. It leads to a holistic understanding of the problem or question to be dealt with. It allows the problem framing to start with a fair representation of the issues, values and interests that can influence the research outcomes. It also identifies critical gaps as our case study below illustrates. Continue reading

How is transformative knowledge ‘co-produced’?

Community member post by Andy Stirling, Adrian Ely and Fiona Marshall

andy-stirling
Andy Stirling (biography)

It’s often said that knowledge to tackle big problems in the world – food, water, climate, energy, biodiversity, disease and war – has to be ‘co-produced’. Tackling these problems is not just about solving ‘grand challenges’ with big solutions, it’s also about grappling with the underlying causal social and political drivers. But what does co-production actually mean, and how can it help to create knowledge that leads to real transformation?

Here’s how we at the Social, Technological and Environmental Pathways to Sustainability (STEPS) Centre approach this challenge of co-production. Continue reading