Managing deep uncertainty: Exploratory modeling, adaptive plans and joint sense making

By Jan Kwakkel

jan-kwakkel
Jan Kwakkel (biography)

How can decision making on complex systems come to grips with irreducible, or deep, uncertainty? Such uncertainty has three sources:

  1. Intrinsic limits to predictability in complex systems.
  2. A variety of stakeholders with different perspectives on what the system is and what problem needs to be solved.
  3. Complex systems are generally subject to dynamic change, and can never be completely understood.

Deep uncertainty means that the various parties to a decision do not know or cannot agree on how the system works, how likely various possible future states of the world are, and how important the various outcomes of interest are.

Read more

Looking for patterns: An approach for tackling tough problems

By Scott D. Peckham

Scott D. Peckham (biography)

What does the word ‘pattern’ mean to you? And how do you use patterns in addressing complex problems?

Patterns are repetitions. These can be in space, such as patterns in textiles and wallpaper, which include houndstooth, herringbone, paisley, plaid, argyle, checkered, striped and polka-dotted.

The pattern concept can also be applied to repetitions in time, as occur in music. Those who know the temporal patterns can classify a piece of music as a blues, waltz or salsa. For each of these types of music, there are also classic dance steps, that usually go by the same name; these are patterns of movement in space and time.

These examples get to the idea that patterns can be viewed more generally as any type of repetitive structure or recurring theme that we can look for and potentially recognize or discover and then assign a memorable name to, such as “houndstooth” or “waltz”. Recognizing the pattern may then indicate a particular course of action, such as “perform dance moves that go with a waltz”.

The ability to recognize a pattern and then take appropriate action is something that we associate with intelligence.

Read more

Scoping: Lessons from environmental impact assessment

By Peter R. Mulvihill

peter-mulvihill
Peter R. Mulvihill (biography)

What can we learn about the role and importance of scoping in the context of environmental impact assessment?

“Closed” versus “open” scoping

I am intrigued by the highly variable approaches to scoping practice in environmental impact assessment and the considerable range between “closed” approaches and more ambitious and open exercises. Closed approaches to scoping tend to narrow the range of questions, possibilities and alternatives that may be considered in environmental impact assessment, while limiting or precluding meaningful public input. Of course, the possibility of more open scoping is sometimes precluded beforehand by narrow terms of reference determined by regulators.

When scoping is not done well, it inevitably compromises subsequent steps in the process.

Read more

Argument-based tools to account for uncertainty in policy analysis and decision support

By Sven Ove Hansson and Gertrude Hirsch Hadorn

authors_sven-ove-hansson_gertrude-hirsch-hadorn
1. Sven Ove Hansson (biography)
2. Gertrude Hirsch Hadorn (biography)

Scientific uncertainty creates problems in many fields of public policy. Often, it is not possible to satisfy the high demands on the information input for standard methods of policy analysis such as risk analysis or cost-benefit analysis. For instance, this seems to be the case for long-term projections of regional trends in extreme weather and their impacts.

However, we cannot wait until science knows the probabilities and expected values for each of the policy options. Decision-makers often have good reason to act although such information is missing. Uncertainty does not diminish the need for policy advice to help them determine which option it would be best to go for.

Read more

Unintended consequences of honouring what communities value and aspire to

By Melissa Robson

melissa-robson
Melissa Robson (biography)

It seems simple enough to say that community values and aspirations should be central to informing government decisions that affect them. But simple things can turn out to be complex.

In particular, when research to inform land and water policy was guided by what the community valued and aspired to rather than solely technical considerations, a much broader array of desirable outcomes was considered and the limitations of what science can measure and predict were usefully exposed.

Read more

Models as ‘interested amateurs’

By Pete Barbrook-Johnson

pete-barbrook-johnson
Pete Barbrook-Johnson (biography)

How can we improve the often poor interaction and lack of genuine discussions between policy makers, experts, and those affected by policy?

As a social scientist who makes and uses models, an idea from Daniel Dennett’s (2013) book ‘Intuition Pumps and Other Tools for Thinking’ struck a chord with me. Dennett introduces the idea of using lay audiences to aid and improve understanding between experts. Dennett suggests that including lay audiences (which he calls ‘curious nonexperts’) in discussions can entice experts to err on the side of over-explaining their thoughts and positions. When experts are talking only to other experts, Dennett suggests they under-explain, not wanting to insult others or look stupid by going over basic assumptions. This means they can fail to identify areas of disagreement, or to reach consensus, understanding, or conclusions that may be constructive.

For Dennett, the ‘curious nonexperts’ are undergraduate philosophy students, to be included in debates between professors. For me, the book sparked the idea that models could be ‘curious nonexperts’ in policy debates and processes. I prefer and use the term ‘interested amateurs’ over ‘curious nonexperts’, simply because the word ‘amateur’ seems slightly more insulting towards models!

Read more

Dealing with deep uncertainty: Scenarios

schmitt-olabisi
Laura Schmitt Olabisi (biography)

By Laura Schmitt Olabisi

What is deep uncertainty? And how can scenarios help deal with it?

Deep uncertainty refers to ‘unknown unknowns’, which simulation models are fundamentally unsuited to address. Any model is a representation of a system, based on what we know about that system. We can’t model something that nobody knows about—so the capabilities of any model (even a participatory model) are bounded by our collective knowledge.

One of the ways we handle unknown unknowns is by using scenarios. Scenarios are stories about the future, meant to guide our decision-making in the present.

Read more

Uncertainty in participatory modeling – What can we learn from management research?

By Antonie Jetter

antonie-jetter
Antonie Jetter (biography)

I frequently struggle to explain how participatory modeling deals with uncertainty. I found useful guidance in the management literature.

After all, participatory modeling projects and strategic business planning have one commonality – a group of stakeholders and decision-makers aims to understand and ultimately influence a complex system. They do so in the face of great uncertainty that frequently cannot be resolved – at least not within the required time frame. Businesses, for example, have precise data on customer behavior when their accountants report on annual sales. However, by this time, the very precise data is irrelevant because the opportunity to influence the system has passed.

Read more

Model complexity – What is the right amount?

By Pete Loucks

p-loucks
Pete Loucks (biography)

How does a modeler know the ’optimal’ level of complexity needed in a model when those desiring to gain insights from the use of such a model aren’t sure what information they will eventually need? In other words, what level of model complexity is needed to do a job when the information needs of that job are uncertain and changing?

Simplification is why we model. We wish to abstract the essence of a system we are studying, and estimate its likely performance, without having to deal with all its detail. We know that our simplified models will be wrong. But, we develop them because they can be useful. The simpler and hence the more understandable models are the more likely they will be useful, and used, ‘as long as they do the job.’

Read more

ICTAM: Bringing mental models to numerical models

By Sondoss Elsawah

sondoss-elsawah
Sondoss Elsawah (biography)

How can we capture the highly qualitative, subjective and rich nature of people’s thinking – their mental models – and translate it into formal quantitative data to be used in numerical models?

This cannot be addressed by a single method or software tool. We need multi-method approaches that have the capacity to take us through the learning journey of eliciting and representing people’s mental models, analysing them, and generating algorithms that can be incorporated into numerical models.

More importantly, this methodology should allow us to see in a transparent way the progression on this learning journey.

Read more

Making predictions under uncertainty

By Joseph Guillaume

Joseph Guillaume (biography)

Prediction under uncertainty is typically seen as a daunting task. It conjures up images of clouded crystal balls and mysterious oracles in shadowy temples. In a modelling context, it might raise concerns about conclusions built on doubtful assumptions about the future, or about the difficulty in making sense of the many sources of uncertainty affecting highly complex models.

However, prediction under uncertainty can be made tractable depending on the type of prediction. Here I describe ways of making predictions under uncertainty for testing which conclusion is correct. Suppose, for example, that you want to predict whether objectives will be met. There are two possible conclusions – Yes and No, so prediction in this case involves testing which of these competing conclusions is plausible.

Read more

Tool users old and new: Why we need models

By Suzanne A. Pierce

pierce
Suzanne A. Pierce (biography)

Ask most 21st century citizens whether they like technology and they will respond with a resounding, “Yes!” Ask them why and you’ll get answers like, “Because it’s cool and technology is fun!” or “Technology systems help us learn and understand things.” Or “Technology helps us communicate with one another, keep up with current events, or share what we are doing.” Look at the day-to-day activities of most people on the planet and you’ll find that they use some form of technology to complete almost every activity that they undertake.

When you think about it, technologies are really just tools. And we humans are tool users of old.

Read more